File size: 23,904 Bytes
2604ac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
---
language:
- en
- ko
license: llama3
tags:
- saltlux
- luxia
- meta
- llama-3
- pytorch
- GGUF
pipeline_tag: text-generation
quantized_by: andrijdavid
---
# Ko-Llama3-Luxia-8B-GGUF
- Original model: [Ko-Llama3-Luxia-8B](https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B)
<!-- description start -->
## Description
This repo contains GGUF format model files for [Ko-Llama3-Luxia-8B](https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B).
<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration.
* [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applicationsโ
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling.
* [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration.
* [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use.
* [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server.
* [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents.
<!-- README_GGUF.md-about-gguf end -->
<!-- compatibility_gguf start -->
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw.
</details>
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: LiteLLMs/Ko-Llama3-Luxia-8B-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download LiteLLMs/Ko-Llama3-Luxia-8B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage (click to read)</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download LiteLLMs/Ko-Llama3-Luxia-8B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install huggingface_hub[hf_transfer]
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/Ko-Llama3-Luxia-8B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->
<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 โ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-python
```
#### Simple llama-cpp-python example code
```python
from llama_cpp import Llama
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first
n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
)
# Simple inference example
output = llm(
"<PROMPT>", # Prompt
max_tokens=512, # Generate up to 512 tokens
stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
echo=True # Whether to echo the prompt
)
# Chat Completion API
llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
llm.create_chat_completion(
messages = [
{"role": "system", "content": "You are a story writing assistant."},
{
"role": "user",
"content": "Write a story about llamas."
}
]
)
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
<!-- README_GGUF.md-how-to-run end -->
<!-- footer end -->
<!-- original-model-card start -->
# Original model card: Ko-Llama3-Luxia-8B
# Model Details
Saltlux, AI Labs ์ธ์ด๋ชจ๋ธํ์์ ํ์ต ๋ฐ ๊ณต๊ฐํ <b>Ko-Llama3-Luxia-8B</b> ๋ชจ๋ธ์ Meta์์ ์ถ์ํ Llama-3-8B ๋ชจ๋ธ์ <b>ํ๊ตญ์ด์ ํนํ</b>ํ ๋ชจ๋ธ์
๋๋ค.<br><br>
์์ฒด ๋ณด์ ํ๊ณ ์๋ 1TB ์ด์์ ํ๊ตญ์ด ํ์ต ๋ฐ์ดํฐ ์ค, ์ฝ 100GB ์ ๋์ ๋ฐ์ดํฐ๋ฅผ ์ ๋ณํ์ฌ ์ฌ์ ํ์ต์ ํ์ฉํ์์ต๋๋ค.<br><br>
๋ํ ๊ณต๊ฐ๋ Llama-3 Tokenizer๋ฅผ ํ๊ตญ์ด๋ก ํ์ฅํ๊ณ ์ฌ์ ํ์ต์ ํ์ฉํ์ต๋๋ค.
- **Meta Llama-3:** Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety.
- **License:** Llama3 License [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
### Intended Use
Ko-Llama3-Luxia-8B๋ ์ฐ๊ตฌ์ฉ์ผ๋ก ์ ์๋์์ผ๋ฉฐ, ๋ค์ํ ์์ฐ์ด ์์ฑ ํ์คํฌ๋ฅผ ์ํด ์์ ๋กญ๊ฒ ํ์ต ๋ฐ ํ์ฉํ ์ ์์ต๋๋ค.
### How to Use
ํด๋น ๋ชจ๋ธ ์นด๋์๋ `Ko-Llama3-Luxia-8B` ๋ชจ๋ธ๊ณผ transformers ๋ผ์ด๋ธ๋ฌ๋ฆฌ ๊ธฐ๋ฐ์ ์์ ์ฝ๋๋ฅผ ์ ๊ณตํฉ๋๋ค.
```
import transformers
import torch
model_id = "saltlux/Ko-Llama3-Luxia-8B"
pipeline = transformers.pipeline(
"text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto"
)
pipeline("<|begin_of_text|>์๋
ํ์ธ์. ์ํธ๋ฃฉ์ค AI Labs ์
๋๋ค.")
```
# Training Details
ํ๊ตญ์ด ํนํ๋ฅผ ์ํ ์ฌ์ ํ์ต ๋ฐ์ดํฐ๋ Saltlux์์ ๋ณด์ ํ ๋ด์ค, ๋ฒ๋ฅ , ํนํ, ์๋ฃ, ์ญ์ฌ, ์ฌํ, ๋ฌธํ, ๋ํ(๋ฌธ์ด/๊ตฌ์ด) ๋ฑ์ ๋๋ฉ์ธ์ผ๋ก ๊ตฌ์ฑ๋ 100GB ์์ค์ ์ฝํผ์ค(~2023๋
)๋ฅผ ํ์ฉํ์์ต๋๋ค.<br>
- ํ์ฌ ์ ๊ณต๋๋ ๋ชจ๋ธ์ 1 Epoch ํ์ต๋ ๋ชจ๋ธ์
๋๋ค.<br>
### Use Device
์ฌ์ ํ์ต์ NVIDIA H100 80GB * 8EA ์ฅ๋น๋ฅผ ํ์ฉํ์ฌ ์งํํ์์ต๋๋ค.
#### Training Hyperparameters
<table>
<tr>
<td><strong>Model</strong>
</td>
<td><strong>Params</strong>
</td>
<td><strong>Context length</strong>
</td>
<td><strong>GQA</strong>
</td>
<td><strong>Learning rate</strong>
</td>
<td><strong>Batch</strong>
</td>
<td><strong>Precision</strong>
</td>
</tr>
<tr>
<td>Ko-Llama3-Luxia-8B
</td>
<td>8B
</td>
<td>8k
</td>
<td>yes
</td>
<td>1e-5
</td>
<td>128
</td>
<td>bf16
</td>
</tr>
</table>
### Tokenizer
Llama-3-Tokenizer๋ฅผ ํ๊ตญ์ด ํนํํ๊ธฐ ์ํด ํ๊ตญ์ด ํ ํฐ 17,536๊ฐ๋ฅผ ์ถ๊ฐํ๊ณ ํ์ฉํ์์ต๋๋ค.
<table>
<tr>
<td><strong>Model</strong>
</td>
<td><strong>Vocab Size</strong>
</td>
</tr>
<tr>
<td>Llama-3
</td>
<td>128,256
</td>
</tr>
<tr>
<td>Ko-Llama3-Luxia-8B
</td>
<td>145,792
</td>
</tr>
</table>
### Tokenizer Result
+ Ko
<table>
<tr>
<td><strong>์
๋ ฅ</strong>
</td>
<td><strong>Llama-3</strong>
</td>
<td><strong>Ko-Llama3-Luxia-8B</strong>
</td>
</tr>
<tr>
<td>์์ฆ ๋ ์จ๊ฐ ๋๋ฌด ์ค๋ฝ๊ฐ๋ฝํด์ ์์ง๋ ๊ฒจ์ธ์ท์ ๋ชป์น์ ์ด์..
</td>
<td>['์', '์ฆ', ' ๋ ', '์จ', '๊ฐ', ' ๋๋ฌด', ' ์ค', '๋ฝ', '๊ฐ', '๋ฝ', 'ํด์', ' ์์ง', '๋', ' ๊ฒจ', '์ธ', '๏ฟฝ', '๏ฟฝ', '์', ' ๋ชป', '์น', '์ ', '์ด์', '..']
</td>
<td>['์์ฆ', ' ๋ ์จ', '๊ฐ', ' ๋๋ฌด', ' ์ค๋ฝ', '๊ฐ๋ฝ', 'ํด์', ' ์์ง', '๋', ' ๊ฒจ์ธ', '์ท', '์', ' ๋ชป', '์น', '์ ', '์ด์', '..']
</td>
</tr>
<tr>
<td>๋ง์๋ ๋ฐฅ์ ๋์
จ์ต๋๊น? ๋ง์ด ๊ถ๊ธํ๋ค์.
</td>
<td>['๋ง', '์๋', ' ๏ฟฝ', '๏ฟฝ', '์', ' ๋', '์
จ', '์ต', '๋๊น', '?', ' ๋ง', '์ด', ' ๊ถ๊ธ', 'ํ', '๋ค์', '.']
</td>
<td>['๋ง', '์๋', ' ๋ฐฅ', '์', ' ๋์
จ', '์ต', '๋๊น', '?', ' ๋ง', '์ด', ' ๊ถ๊ธ', 'ํ', '๋ค์', '.']
</td>
</tr>
<tr>
<td>๋๋ฒ์๋ถํฐ ํ๊ธ์ฌ ํ๋ก๊น์ง ์ํ๋ ํ๋ก๋ฅผ ์ฐพ๋ ๊ฐ์ฅ ๋น ๋ฅธ ๋ฐฉ๋ฒ - ์๋ฉด ๊ฒ์, ์์ฒญ ํ๋ก, ์ ์ฌ ํ๋ก, AI ์ถ์ฒ, ํ๋ก ๋ฐ ๋ฒ๋ น ๊ฒ์.
</td>
<td>['๋', '๋ฒ', '์', '๋ถํฐ', ' ํ', '๊ธ', '์ฌ', ' ํ', '๋ก', '๊น์ง', ' ์', 'ํ๋', ' ํ', '๋ก', '๋ฅผ', ' ์ฐพ', '๋', ' ๊ฐ์ฅ', ' ๋น ', '๋ฅธ', ' ๋ฐฉ๋ฒ', ' -', ' ์', '๋ฉด', ' ๊ฒ์', ',', ' ์์ฒญ', ' ํ', '๋ก', ',', ' ์ ', '์ฌ', ' ํ', '๋ก', ',', ' AI', ' ์ถ์ฒ', ',', ' ํ', '๋ก', ' ๋ฐ', ' ๋ฒ', '๋ น', ' ๊ฒ์', '.']
</td>
<td>['๋', '๋ฒ', '์', '๋ถํฐ', ' ํ', '๊ธ', '์ฌ', ' ํ๋ก', '๊น์ง', ' ์', 'ํ๋', ' ํ๋ก', '๋ฅผ', ' ์ฐพ', '๋', ' ๊ฐ์ฅ', ' ๋น ๋ฅธ', ' ๋ฐฉ๋ฒ', ' -', ' ์๋ฉด', ' ๊ฒ์', ',', ' ์์ฒญ', ' ํ๋ก', ',', ' ์ ์ฌ', ' ํ๋ก', ',', ' AI', ' ์ถ์ฒ', ',', ' ํ๋ก', ' ๋ฐ', ' ๋ฒ๋ น', ' ๊ฒ์', '.']
</td>
</tr>
<tr>
<td>๋ณธ ๋ฐ๋ช
์ ๊ธ์ํ์ ๋ค์ ๋ถ๋ถ์ ์์นญ์์ผ ํน์ ๋ฌด๋ฌ๋ชจ์์ ํ์ฑํ๋ ๊ฑด์ถ์ฉ ๊ธ์์ฌ ์ฅ์ํ์ผ๋ก ์ด๋ฃจ์ด์ง ๊ฒ์ ํน์ง์ด ์๋ค.
</td>
<td>['๋ณธ', ' ๋ฐ', '๋ช
', '์', ' ๊ธ', '์', 'ํ', '์', ' ๋ค', '์', ' ๋ถ๋ถ', '์', ' ์', '์นญ', '์', '์ผ', ' ํน', '์ ', ' ๋ฌด', '๏ฟฝ', '๏ฟฝ', '๋ชจ', '์', '์', ' ํ', '์ฑ', 'ํ๋', ' ๊ฑด', '์ถ', '์ฉ', ' ๊ธ', '์', '์ฌ', ' ์ฅ', '์', 'ํ', '์ผ๋ก', ' ์ด๋ฃจ', '์ด์ง', ' ๊ฒ', '์', ' ํน', '์ง', '์ด', ' ์๋ค', '.']
</td>
<td>['๋ณธ', ' ๋ฐ๋ช
', '์', ' ๊ธ์', 'ํ', '์', ' ๋ค์', ' ๋ถ๋ถ', '์', ' ์์นญ', '์', '์ผ', ' ํน์ ', ' ๋ฌด๋ฌ', '๋ชจ', '์', '์', ' ํ์ฑ', 'ํ๋', ' ๊ฑด์ถ', '์ฉ', ' ๊ธ์', '์ฌ', ' ์ฅ์', 'ํ', '์ผ๋ก', ' ์ด๋ฃจ์ด์ง', ' ๊ฒ', '์', ' ํน์ง', '์ด', ' ์๋ค', '.']
</td>
</tr>
<tr>
<td>๊ณจ๋ค๊ณต์ฆ์ ์ ์๊ธฐ๋๊ฑฐ์์? ๊ทธ๋ฆฌ๊ณ ์น๋ฃํ๋ ค๋ฉด ์ด๋ป๊ฒํด์ผํ์ฃ ?
</td>
<td>['๊ณจ', '๋ค', '๊ณต', '์ฆ', '์', ' ์', ' ์', '๊ธฐ๋', '๊ฑฐ', '์', '์', '?', ' ๊ทธ๋ฆฌ๊ณ ', ' ์น', '๋ฃ', 'ํ๋ ค', '๋ฉด', ' ์ด๋ป๊ฒ', 'ํด์ผ', 'ํ', '์ฃ ', '?']
</td>
<td>['๊ณจ', '๋ค', '๊ณต์ฆ', '์', ' ์', ' ์', '๊ธฐ๋', '๊ฑฐ', '์', '์', '?', ' ๊ทธ๋ฆฌ๊ณ ', ' ์น๋ฃ', 'ํ๋ ค', '๋ฉด', ' ์ด๋ป๊ฒ', 'ํด์ผ', 'ํ', '์ฃ ', '?']
</td>
</tr>
</table>
+ En
<table>
<tr>
<td><strong>์
๋ ฅ</strong>
</td>
<td><strong>Llama-3</strong>
</td>
<td><strong>Ko-Llama3-Luxia-8B</strong>
</td>
</tr>
<tr>
<td>Korean cuisine, hanguk yori, or hansik, has evolved through centuries of social and political change.
</td>
<td>['K', 'orean', ' cuisine', ',', ' h', 'angu', 'k', ' y', 'ori', ',', ' or', ' hans', 'ik', ',', ' has', ' evolved', ' through', ' centuries', ' of', ' social', ' and', ' political', ' change', '.']
</td>
<td>['K', 'orean', ' cuisine', ',', ' h', 'angu', 'k', ' y', 'ori', ',', ' or', ' hans', 'ik', ',', ' has', ' evolved', ' through', ' centuries', ' of', ' social', ' and', ' political', ' change', '.']
</td>
</tr>
<tr>
<td>Son Heung-min is a South Korean professional footballer who plays as a forward for and captains both Premier League club Tottenham Hotspur and the South Korea national team.
</td>
<td>['Son', ' He', 'ung', '-min', ' is', ' a', ' South', ' Korean', ' professional', ' football', 'er', ' who', ' plays', ' as', ' a', ' forward', ' for', ' and', ' captains', ' both', ' Premier', ' League', ' club', ' Tottenham', ' Hot', 'sp', 'ur', ' and', ' the', ' South', ' Korea', ' national', ' team', '.']
</td>
<td>['Son', ' He', 'ung', '-min', ' is', ' a', ' South', ' Korean', ' professional', ' football', 'er', ' who', ' plays', ' as', ' a', ' forward', ' for', ' and', ' captains', ' both', ' Premier', ' League', ' club', ' Tottenham', ' Hot', 'sp', 'ur', ' and', ' the', ' South', ' Korea', ' national', ' team', '.']
</td>
</tr>
</table>
### Inference Result
<table>
<tr>
<td><strong>Llama-3</strong>
</td>
<td><strong>Ko-Llama3-Luxia-8B</strong>
</td>
</tr>
<tr>
<td><b>์บ๋ฆฌ๋น์๋ฒ ์ด๋ ์ฉ์ธ์</b> ์์นํ ์บ๋ฆฌ๋น์ ๋ฒ ์ด์ ๊ณต์ ์จ๋ผ์ธ ์นด์ง๋
ธ์
๋๋ค. ์บ๋ฆฌ๋น์ ๋ฒ ์ด๋ 1994๋
๋ถํฐ ์ด์๋์ด ์์ผ๋ฉฐ, 2005๋
์ ์จ๋ผ์ธ์ผ๋ก ์คํํ์ต๋๋ค. ์ด ์ฌ์ดํธ๋ ์๊ตญ์์ ์ด์๋๋ ๋ผ์ด์ผ์ค๋ฅผ ๊ฐ์ง๊ณ ์์ผ๋ฉฐ, ์๊ตญ ์ ๋ถ๊ฐ ์น์ธํ๊ณ ์์ต๋๋ค.\n์บ๋ฆฌ๋น์ ๋ฒ ์ด๋ ๋ค์ํ ๊ฒ์์ ์ ๊ณตํฉ๋๋ค. ์ฌ๋กฏ ๋จธ์ , ๋ธ๋์ญ, ๋ฃฐ๋ , ํฌ์ปค, ๋ฐ์นด๋ผ ๋ฑ์ด ์์ต๋๋ค. ๋ํ, ์บ๋ฆฌ๋น์ ๋ฒ ์ด๋ ๋ค์ํ ๋ณด๋์ค์ ํ๋ก๋ชจ์
์ ์ ๊ณตํฉ๋๋ค. ์๋ฅผ ๋ค์ด, ์ ๊ท ํ์์๊ฒ๋ ๊ฐ์
์ 100% ๋ฐฐํ
๋ณด๋์ค๊ฐ ์ฃผ์ด์ง๋๋ค. ๋ํ, ๋งค์ฃผ๋ง๋ค ๋ค์ํ ์ด๋ฒคํธ์ ํ๋ก๋ชจ์
์ด ์งํ๋ฉ๋๋ค.<์ดํ ์๋ต>
</td>
<td><b>์บ๋ฆฌ๋น์๋ฒ ์ด๋ ์ฉ์ธ์</b> ์๋ ๋์ด๊ณต์์ธ๋ฐ์. ์บ๋ฆฌ๋น์๋ฒ ์ด์ ๊ฒฝ์ฐ์๋ ์ํฐํํฌ์ ๋์ด๊ณต์์ด ๊ฐ์ด ์์ต๋๋ค. ๊ทธ๋์ ์ฌ๋ฆ์๋ ๋ฌผ๋์ด๋ฅผ ์ฆ๊ธฐ๊ณ ๊ฒจ์ธ์๋ ๋์ฐ๋งค๋ฅผ ํ ์ ์์ด์ ์ฌ๊ณ์ ๋ด๋ด ์ฆ๊ธธ ์ ์๋ ๊ณณ์ด์ฃ .\n์บ๋ฆฌ๋น์๋ฒ ์ด๋ฅผ ์ด์ฉํ๋ ค๋ฉด ์ฐ์ ํํ์ด์ง์์ ์
์ฅ๊ถ์ ๊ตฌ๋งคํด์ผ ํฉ๋๋ค. ๊ทธ๋ฆฌ๊ณ ์บ๋ฆฌ๋น์๋ฒ ์ด์ ๊ฒฝ์ฐ์๋ 1๋
๋์ ์์ ๋กญ๊ฒ ์ด์ฉํ ์ ์๋ ์ฐ๊ฐํ์๊ถ๋ ํ๋งคํ๋๋ฐ์. ์ฐ๊ฐํ์๊ถ์ ์ฑ์ธ๊ณผ ์ด๋ฆฐ์ด ๋ชจ๋ ๊ตฌ๋งค๊ฐ ๊ฐ๋ฅํฉ๋๋ค.<์ดํ ์๋ต>
</td>
</tr>
<tr>
<td><b>๋ฒ ํธ๋จ ์๊ตญ์๋</b> ํ๊ตญ์ ๊ตญ๋ฐฅ๊ณผ ๋น์ทํ ์์์
๋๋ค. ๋ฒ ํธ๋จ ์๊ตญ์์๋ ์, ๋ผ์ง๊ณ ๊ธฐ, ๊ณ๋, ์ํ, ๋ง๋, ์๊ฐ, ๊ณ ์ถ ๋ฑ์ด ๋ค์ด๊ฐ๋๋ค.\n1. ์์ ์ป์ด ๋ฌผ์ ๋ด๊ฐ ๋ก๋๋ค.\n2. ๋ผ์ง๊ณ ๊ธฐ๋ฅผ ์๊ฒ ์ฐ๊ณ , ์ํ์ ๋ง๋, ์๊ฐ, ๊ณ ์ถ๋ฅผ ๋ค์ ธ์ค๋๋ค.\n3. ํฌ์ ๊ธฐ๋ฆ์ ๋๋ฅด๊ณ ๋ผ์ง๊ณ ๊ธฐ๋ฅผ ๋ณถ๋ค๊ฐ ์ํ์ ๋ง๋, ์๊ฐ, ๊ณ ์ถ๋ฅผ ๋ฃ์ต๋๋ค.\n4. ๊ณ๋์ ํ์ด์ ๋ฃ๊ณ , ๊ฐ์ฅ์ ๋ฃ์ด ๋ณถ์์ค๋๋ค.\n5. ์์ ๋ฌผ์ ๋ถ๋ ค์ ๋ฃ๊ณ , ๋์ผ๋ฉด ์๊ธ๊ณผ ํ์ถ๋ฅผ ๋ฃ์ด์ค๋๋ค.\n6. ์๊ตญ์๋ฅผ ๋จน๊ธฐ ์ข์ ์ํ๊ฐ ๋๋ฉด ๊บผ๋ด ์ค๋๋ค.\n7. ์๊ตญ์์ ์์ ๋ผ์ง๊ณ ๊ธฐ์ ๊ณ๋์ ์น์ด ๋จน์ต๋๋ค.\nVietnamese rice noodles are similar to Korean rice porridge. Vietnamese rice noodles contain rice, pork, eggs, onions, garlic, ginger and chili peppers.<์ดํ ์๋ต>
</td>
<td><b>๋ฒ ํธ๋จ ์๊ตญ์๋</b> ์ผ๋ฐ์ ์ผ๋ก ์๊ฒ ์ฌ ์๊ฐ๋ฃจ๋ก ๋ง๋ ๋ฉด์ ์ฌ์ฉํฉ๋๋ค. ๋ฉด์ ๋จ๊ฑฐ์ด ๋ฌผ์ ์ถ์์ ์ฐฌ๋ฌผ์ ํน๊ตฌ์ด๋
๋๋ค. ๋ฉด์ด ์ถ์์ง๋ฉด ์ก์์ ์ผ์ฑ๋ฅผ ๋ฃ๊ณ ๋์
๋๋ค. ์ก์๋ฅผ ๋ง๋ค ๋๋ ๋ญ๊ณ ๊ธฐ, ์๊ณ ๊ธฐ, ๋ผ์ง๊ณ ๊ธฐ ๋ฑ ๋ค์ํ ์ฌ๋ฃ๋ฅผ ์ฌ์ฉํ ์ ์์ต๋๋ค. ์ผ์ฑ๋ก๋ ๋น๊ทผ, ์ํ, ํ ๋ฑ์ ์ฌ์ฉํ ์ ์์ต๋๋ค.<์ดํ ์๋ต>
</td>
</tr>
<tr>
<td><b>ํ๊ตญ์ ์ ํต์์์ธ</b> ํ๋ณต๊ณผ ์ผ๋ณธ์ ์ ํต์์์ธ ์๋ก์นด๋ฏธ๋ ๋ชจ๋ 5๋๋ฅ์ ๋ฌธํ๋ฅผ ์์ฉํ๊ณ , ๊ฐ๊ธฐ ๋ค๋ฅธ ์ง์ญ์ ํน์ง์ ๋ฐ์ํ ์์์ ๊ฐ์ถ๊ณ ์๋ค. ์ด๋ฌํ ์์์ ํน์ง์ ๊ฐ๊ฐ์ ๊ตญ๊ฐ์์ ๋ฐ์ ํด ์จ ์ญ์ฌ์ ๋ฌธํ์ ๊ธฐ์ดํ๋ค. ํํธ, ํ๊ตญ์ ํ๋ณต๊ณผ ์ผ๋ณธ์ ์๋ก์นด๋ฏธ๋ ์๋ก ๋น์ทํ ํํ๋ฅผ ๊ฐ์ง๊ณ ์์ง๋ง, ๊ทธ ์๋ฏธ๋ ๋ค๋ฅด๋ค. ํ๋ณต์ ํ๊ตญ์ธ์ ์ ์ฒด์ฑ์ ๋ํ๋ด๋ฉฐ, ์๋ก์นด๋ฏธ๋ ์ผ๋ณธ์ธ์ ์ ์ฒด์ฑ์ ๋ํ๋ธ๋ค. ๋ฐ๋ผ์ ์ด ๋ ๊ฐ์ง ์์์ ์๋ก ๋ค๋ฅธ ๋ฌธํ์ ๋ฐฐ๊ฒฝ์ ๊ฐ์ง ์ฌ๋๋ค์ ์ ์ฒด์ฑ ํํ์ ์ฌ์ฉ๋๋ค.\nThe traditional costumes of Korea and Japan are hanbok and yorokami respectively. Both have been influenced by the cultures of other countries and reflect the characteristics of their respective regions. The distinctive features of these costumes are based on the history and culture of each country. However, although hanbok and yorokami share similar forms, they have different meanings. Hanbok represents Korean identity while yorokami represents Japanese identity. <์ดํ ์๋ต>
</td>
<td><b>ํ๊ตญ์ ์ ํต์์์ธ</b> ํ๋ณต์ ํ๊ตญ์ ๋ฌธํ๋ฅผ ๋ํํ๋ ์์ง๋ฌผ์ด๋ค. ํ์ง๋ง ์ต๊ทผ์๋ ํ๋ณต์ ์
๋ ์ฌ๋๋ค์ด ์ ์ ์ค์ด๋ค๊ณ ์๋ค. ์ด๋ ์ฌ๋ฌ ๊ฐ์ง ์ด์ ๊ฐ ์๊ฒ ์ง๋ง, ๊ทธ ์ค ํ๋๋ ํ๋ณต์ด ๋ถํธํ๊ธฐ ๋๋ฌธ์ผ ๊ฒ์ด๋ค. ํ๋ณต์ ์ผ๋ฐ์ ์ธ ์ท๋ณด๋ค ๋ ๋ง์ ๋ถ๋ถ์ ๋ฎ์ด์ผ ํ๊ณ , ์์ง์ด๊ธฐ ์ด๋ ต๋ค. ๋ํ, ํ๋ณต์ ์ธํํ๊ธฐ๊ฐ ์ด๋ ต๊ณ , ๊ด๋ฆฌํ๊ธฐ๋ ์ฝ์ง ์๋ค.\nํ์ง๋ง ํ๋ณต์ ๋จ์ํ ๋ถํธํ๊ณ ๊ด๋ฆฌํ๊ธฐ ์ด๋ ค์ด ์ท์ด ์๋๋ค. ํ๋ณต์ ํ๊ตญ์ธ์ ์ญ์ฌ์ ๋ฌธํ๋ฅผ ๋ด๊ณ ์๋ ์์คํ ๋ฌธํ์ ์ฐ์ด๋ค. ํ๋ณต์ ํ๊ตญ์ ์ ํต๊ณผ ๋ฏธ๋ฅผ ํํํ๋ ์ค์ํ ์๋จ์ด๋ฉฐ, ํ๊ตญ์ ์ ์ฒด์ฑ์ ๋ํ๋ด๋ ์์ง๋ฌผ์ด๋ค. ๋ฐ๋ผ์ ์ฐ๋ฆฌ๋ ํ๋ณต์ ๋ณด์กดํ๊ณ ๊ณ์นํด์ผ ํ๋ค.<์ดํ ์๋ต>
</td>
</tr>
</table>
### Citation instructions
**Ko-Llama3-Luxia-8B**
```
@article{kollama3luxiamodelcard,
title={Ko Llama 3 Luxia Model Card},
author={AILabs@Saltux},
year={2024},
url={https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B/blob/main/README.md}
}
```
**Original Llama-3**
```
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url={https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
```
<!-- original-model-card end -->
|