File size: 3,148 Bytes
3d44a0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: other
base_model: yahma/llama-7b-hf
tags:
- generated_from_trainer
model-index:
- name: V0305O5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# V0305O5
This model is a fine-tuned version of [yahma/llama-7b-hf](https://huggingface.co/yahma/llama-7b-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1492
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 20
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.5593 | 0.09 | 10 | 1.0148 |
| 0.3007 | 0.17 | 20 | 0.1582 |
| 0.1628 | 0.26 | 30 | 0.1506 |
| 0.154 | 0.34 | 40 | 0.1545 |
| 0.152 | 0.43 | 50 | 0.1497 |
| 0.1607 | 0.51 | 60 | 0.1541 |
| 0.154 | 0.6 | 70 | 0.1510 |
| 0.1541 | 0.68 | 80 | 0.1507 |
| 0.1496 | 0.77 | 90 | 0.1498 |
| 0.1539 | 0.85 | 100 | 0.1506 |
| 0.1559 | 0.94 | 110 | 0.1525 |
| 0.1511 | 1.02 | 120 | 0.1490 |
| 0.154 | 1.11 | 130 | 0.1513 |
| 0.1502 | 1.19 | 140 | 0.1504 |
| 0.1528 | 1.28 | 150 | 0.1502 |
| 0.1537 | 1.37 | 160 | 0.1502 |
| 0.1521 | 1.45 | 170 | 0.1493 |
| 0.1497 | 1.54 | 180 | 0.1511 |
| 0.1547 | 1.62 | 190 | 0.1506 |
| 0.1535 | 1.71 | 200 | 0.1483 |
| 0.1519 | 1.79 | 210 | 0.1501 |
| 0.1546 | 1.88 | 220 | 0.1505 |
| 0.1566 | 1.96 | 230 | 0.1497 |
| 0.1512 | 2.05 | 240 | 0.1500 |
| 0.1546 | 2.13 | 250 | 0.1486 |
| 0.1512 | 2.22 | 260 | 0.1492 |
| 0.1497 | 2.3 | 270 | 0.1492 |
| 0.1552 | 2.39 | 280 | 0.1485 |
| 0.1532 | 2.47 | 290 | 0.1486 |
| 0.1519 | 2.56 | 300 | 0.1490 |
| 0.1509 | 2.65 | 310 | 0.1492 |
| 0.1525 | 2.73 | 320 | 0.1493 |
| 0.1506 | 2.82 | 330 | 0.1492 |
| 0.1505 | 2.9 | 340 | 0.1493 |
| 0.1514 | 2.99 | 350 | 0.1492 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|