Update README.md
Browse files
README.md
CHANGED
@@ -20,4 +20,4 @@ metrics:
|
|
20 |
在此實驗設計中,DRCD基準資料集中的每個問題,會搭配10個和問題最相近的段落,額外還有1個保證包含正確答案的最佳段落(The Best Passage),在BERT閱讀器測試方面,每次進行閱讀理解測試時,是輸入問題和最佳段落,並對比閱讀器預測結果和標準答案之間的差異,計算出F1分數和EM分數。
|
21 |
對比閱讀器預測結果和標準答案之間的差異,計算出F1分數和EM分數,分別測試兩個閱讀器,我們可以發現AFC閱讀器的表現並不遜色於BERT閱讀器,甚至在分數表現上更好。
|
22 |
|
23 |
-
|
|
|
20 |
在此實驗設計中,DRCD基準資料集中的每個問題,會搭配10個和問題最相近的段落,額外還有1個保證包含正確答案的最佳段落(The Best Passage),在BERT閱讀器測試方面,每次進行閱讀理解測試時,是輸入問題和最佳段落,並對比閱讀器預測結果和標準答案之間的差異,計算出F1分數和EM分數。
|
21 |
對比閱讀器預測結果和標準答案之間的差異,計算出F1分數和EM分數,分別測試兩個閱讀器,我們可以發現AFC閱讀器的表現並不遜色於BERT閱讀器,甚至在分數表現上更好。
|
22 |
|
23 |
+
在我們的情境中,基於Text-to-Text Generation概念實作出來的Extractor,在混雜資料上的表現,更優於Bert。
|