--- base_model: AIRI-Institute/gena-lm-bert-base-t2t tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: gut_1024-finetuned-lora-bert-base-t2t results: [] --- # gut_1024-finetuned-lora-bert-base-t2t This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-base-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bert-base-t2t) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4700 - F1: 0.8448 - Mcc Score: 0.5728 - Accuracy: 0.7943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Mcc Score | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:--------:| | 0.6922 | 0.02 | 100 | 0.6644 | 0.7478 | 0.0 | 0.5971 | | 0.6582 | 0.04 | 200 | 0.6766 | 0.4699 | 0.2578 | 0.5570 | | 0.6578 | 0.05 | 300 | 0.5801 | 0.8210 | 0.4886 | 0.7508 | | 0.5793 | 0.07 | 400 | 0.5814 | 0.8013 | 0.4141 | 0.7082 | | 0.5933 | 0.09 | 500 | 0.5877 | 0.7408 | 0.4494 | 0.7183 | | 0.5616 | 0.11 | 600 | 0.5000 | 0.8229 | 0.5282 | 0.7766 | | 0.5168 | 0.12 | 700 | 0.5027 | 0.8347 | 0.5540 | 0.7884 | | 0.4788 | 0.14 | 800 | 0.5284 | 0.7922 | 0.5012 | 0.7572 | | 0.5255 | 0.16 | 900 | 0.4859 | 0.8445 | 0.5696 | 0.7901 | | 0.5404 | 0.18 | 1000 | 0.4700 | 0.8448 | 0.5728 | 0.7943 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2