--- base_model: AIRI-Institute/gena-lm-bert-large-t2t tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: gut_1024-finetuned-lora-bert-large-t2t results: [] --- # gut_1024-finetuned-lora-bert-large-t2t This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-large-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bert-large-t2t) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4378 - F1: 0.8676 - Mcc Score: 0.6476 - Accuracy: 0.8315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Mcc Score | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:--------:| | 0.6357 | 0.02 | 100 | 0.5047 | 0.8379 | 0.5616 | 0.7918 | | 0.5873 | 0.04 | 200 | 1.0646 | 0.6898 | 0.4070 | 0.6829 | | 0.5661 | 0.05 | 300 | 0.4921 | 0.8386 | 0.5593 | 0.7901 | | 0.5018 | 0.07 | 400 | 0.4753 | 0.8476 | 0.5791 | 0.7927 | | 0.5461 | 0.09 | 500 | 0.4841 | 0.8465 | 0.5947 | 0.8074 | | 0.4555 | 0.11 | 600 | 0.4521 | 0.8580 | 0.6239 | 0.8209 | | 0.4155 | 0.12 | 700 | 0.4519 | 0.8655 | 0.6386 | 0.8264 | | 0.438 | 0.14 | 800 | 0.4634 | 0.8539 | 0.6130 | 0.8159 | | 0.4306 | 0.16 | 900 | 0.4298 | 0.8615 | 0.6232 | 0.8150 | | 0.4791 | 0.18 | 1000 | 0.4378 | 0.8676 | 0.6476 | 0.8315 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2