File size: 2,282 Bytes
59b3db3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: AIRI-Institute/gena-lm-bigbird-base-t2t
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: test_run
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_run
This model is a fine-tuned version of [AIRI-Institute/gena-lm-bigbird-base-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bigbird-base-t2t) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2397
- F1: 0.8195
- Mcc Score: 0.5808
- Accuracy: 0.7933
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Mcc Score | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:--------:|
| 0.6329 | 1.0 | 94 | 0.5532 | 0.7711 | 0.4531 | 0.7335 |
| 0.4921 | 2.0 | 188 | 0.4789 | 0.8359 | 0.5501 | 0.7832 |
| 0.3981 | 3.0 | 282 | 0.4760 | 0.8347 | 0.5789 | 0.7987 |
| 0.3579 | 4.0 | 376 | 0.6767 | 0.7737 | 0.5377 | 0.7587 |
| 0.2488 | 5.0 | 470 | 0.5478 | 0.8327 | 0.5887 | 0.8015 |
| 0.1889 | 6.0 | 564 | 0.7844 | 0.8231 | 0.5846 | 0.7962 |
| 0.1569 | 7.0 | 658 | 0.8773 | 0.8254 | 0.5868 | 0.7978 |
| 0.1034 | 8.0 | 752 | 1.4445 | 0.7499 | 0.4939 | 0.7353 |
| 0.0832 | 9.0 | 846 | 1.6405 | 0.7195 | 0.4955 | 0.7205 |
| 0.1051 | 10.0 | 940 | 1.2397 | 0.8195 | 0.5808 | 0.7933 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|