--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL ---
DeepSeek-V2

Homepage Chat Hugging Face
Discord Wechat Twitter Follow
Code License Model License

Paper Link👁️

# DeepSeek-V2.5 ## 1. Introduction DeepSeek-V2.5 is an upgraded version that combines DeepSeek-V2-Chat and DeepSeek-Coder-V2-Instruct. The new model integrates the general and coding abilities of the two previous versions. For model details, please visit [DeepSeek-V2 page](https://github.com/deepseek-ai/DeepSeek-V2) for more information. DeepSeek-V2.5 better aligns with human preferences and has been optimized in various aspects, including writing and instruction following: | Metric | DeepSeek-V2-0628 | DeepSeek-Coder-V2-0724 | DeepSeek-V2.5 | |:-----------------------|:-----------------|:-----------------------|:--------------| | AlpacaEval 2.0 | 46.6 | 44.5 | 50.5 | | ArenaHard | 68.3 | 66.3 | 76.2 | | AlignBench | 7.88 | 7.91 | 8.04 | | MT-Bench | 8.85 | 8.91 | 9.02 | | HumanEval python | 84.5 | 87.2 | 89 | | HumanEval Multi | 73.8 | 74.8 | 73.8 | | LiveCodeBench(01-09) | 36.6 | 39.7 | 41.8 | | Aider | 69.9 | 72.9 | 72.2 | | SWE-verified | N/A | 19 | 16.8 | | DS-FIM-Eval | N/A | 73.2 | 78.3 | | DS-Arena-Code | N/A | 49.5 | 63.1 | ## 2. How to run locally **To utilize DeepSeek-V2.5 in BF16 format for inference, 80GB*8 GPUs are required.** ### Inference with Huggingface's Transformers You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "deepseek-ai/DeepSeek-V2.5" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # `max_memory` should be set based on your devices max_memory = {i: "75GB" for i in range(8)} # `device_map` cannot be set to `auto` model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager") model.generation_config = GenerationConfig.from_pretrained(model_name) model.generation_config.pad_token_id = model.generation_config.eos_token_id messages = [ {"role": "user", "content": "Write a piece of quicksort code in C++"} ] input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) print(result) ``` The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository. **Note: The chat template has been updated compared to the previous DeepSeek-V2-Chat version.** An example of chat template is as belows: ```bash <|begin▁of▁sentence|><|User|>{user_message_1}<|Assistant|>{assistant_message_1}<|end▁of▁sentence|><|User|>{user_message_2}<|Assistant|> ``` You can also add an optional system message: ```bash <|begin▁of▁sentence|>{system_message}<|User|>{user_message_1}<|Assistant|>{assistant_message_1}<|end▁of▁sentence|><|User|>{user_message_2}<|Assistant|> ``` ### Inference with vLLM (recommended) To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams max_model_len, tp_size = 8192, 8 model_name = "deepseek-ai/DeepSeek-V2.5" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True) sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) messages_list = [ [{"role": "user", "content": "Who are you?"}], [{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}], [{"role": "user", "content": "Write a piece of quicksort code in C++."}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` ### Function calling Function calling allows the model to call external tools to enhance its capabilities. Here is an example: ```python # Assume that `model` and `tokenizer` are loaded model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id) tool_system_prompt = """You are a helpful Assistant. ## Tools ### Function You have the following functions available: - `get_current_weather`: ```json { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": [ "celsius", "fahrenheit" ] } }, "required": [ "location" ] } } ```""" tool_call_messages = [{"role": "system", "content": tool_system_prompt}, {"role": "user", "content": "What's the weather like in Tokyo and Paris?"}] tool_call_inputs = tokenizer.apply_chat_template(tool_call_messages, add_generation_prompt=True, return_tensors="pt") tool_call_outputs = model.generate(tool_call_inputs.to(model.device)) # Generated text: '<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{"location": "Tokyo"}\n```<|tool▁call▁end|>\n<|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{"location": "Paris"}\n```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>' # Mock response of calling `get_current_weather` tool_messages = [{"role": "tool", "content": '{"location": "Tokyo", "temperature": "10", "unit": null}'}, {"role": "tool", "content": '{"location": "Paris", "temperature": "22", "unit": null}'}] tool_inputs = tokenizer.apply_chat_template(tool_messages, add_generation_prompt=False, return_tensors="pt")[:, 1:] tool_inputs = torch.cat([tool_call_outputs, tool_inputs.to(model.device)], dim=1) tool_outputs = model.generate(tool_inputs) # Generated text: The current weather in Tokyo is 10 degrees, and in Paris, it is 22 degrees.<|end▁of▁sentence|> ``` ### JSON output You can use JSON Output Mode to ensure the model generates a valid JSON object. To active this mode, a special instruction should be appended to your system prompt. ```python # Assume that `model` and `tokenizer` are loaded model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id) user_system_prompt = 'The user will provide some exam text. Please parse the "question" and "answer" and output them in JSON format.' json_system_prompt = f"""{user_system_prompt} ## Response Format Reply with JSON object ONLY.""" json_messages = [{"role": "system", "content": json_system_prompt}, {"role": "user", "content": "Which is the highest mountain in the world? Mount Everest."}] json_inputs = tokenizer.apply_chat_template(json_messages, add_generation_prompt=True, return_tensors="pt") json_outpus = model.generate(json_inputs.to(model.device)) # Generated text: '```json\n{\n "question": "Which is the highest mountain in the world?",\n "answer": "Mount Everest."\n}\n```<|end▁of▁sentence|>' ``` ### FIM completion In FIM (Fill In the Middle) completion, you can provide a prefix and an optional suffix, and the model will complete the content in between. ```python # Assume that `model` and `tokenizer` are loaded model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id) prefix = """def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[0] left = [] right = [] """ suffix = """ if arr[i] < pivot: left.append(arr[i]) else: right.append(arr[i]) return quick_sort(left) + [pivot] + quick_sort(right)""" fim_prompt = f"<|fim▁begin|>{prefix}<|fim▁hole|>{suffix}<|fim▁end|>" fim_inputs = tokenizer(fim_prompt, add_special_tokens=True, return_tensors="pt").input_ids fim_outputs = model.generate(fim_inputs.to(model.device)) # Generated text: " for i in range(1, len(arr)):<|end▁of▁sentence|>" ``` ## 3. License This code repository is licensed under the MIT License. The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE). DeepSeek-V2 series (including Base and Chat) supports commercial use. ## 4. Citation ``` @misc{deepseekv2, title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model}, author={DeepSeek-AI}, year={2024}, eprint={2405.04434}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## 5. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).