LlamaFinetuneBase commited on
Commit
489dcdf
·
verified ·
1 Parent(s): 36a50d6

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +114 -0
README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - fr
5
+ - it
6
+ - de
7
+ - es
8
+ - en
9
+ tags:
10
+ - moe
11
+
12
+ extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/fr/terms/">Privacy Policy</a>.
13
+ ---
14
+ # Model Card for Mixtral-8x7B
15
+ The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested.
16
+
17
+ For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/).
18
+
19
+ ## Warning
20
+ This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.
21
+
22
+ ## Run the model
23
+
24
+
25
+ ```python
26
+ from transformers import AutoModelForCausalLM, AutoTokenizer
27
+
28
+ model_id = "mistralai/Mixtral-8x7B-v0.1"
29
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
30
+
31
+ model = AutoModelForCausalLM.from_pretrained(model_id)
32
+
33
+ text = "Hello my name is"
34
+ inputs = tokenizer(text, return_tensors="pt")
35
+
36
+ outputs = model.generate(**inputs, max_new_tokens=20)
37
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
38
+ ```
39
+
40
+ By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:
41
+
42
+ ### In half-precision
43
+
44
+ Note `float16` precision only works on GPU devices
45
+
46
+ <details>
47
+ <summary> Click to expand </summary>
48
+
49
+ ```diff
50
+ + import torch
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
+
53
+ model_id = "mistralai/Mixtral-8x7B-v0.1"
54
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
55
+
56
+ + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0)
57
+
58
+ text = "Hello my name is"
59
+ + inputs = tokenizer(text, return_tensors="pt").to(0)
60
+
61
+ outputs = model.generate(**inputs, max_new_tokens=20)
62
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
63
+ ```
64
+ </details>
65
+
66
+ ### Lower precision using (8-bit & 4-bit) using `bitsandbytes`
67
+
68
+ <details>
69
+ <summary> Click to expand </summary>
70
+
71
+ ```diff
72
+ + import torch
73
+ from transformers import AutoModelForCausalLM, AutoTokenizer
74
+
75
+ model_id = "mistralai/Mixtral-8x7B-v0.1"
76
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
77
+
78
+ + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
79
+
80
+ text = "Hello my name is"
81
+ + inputs = tokenizer(text, return_tensors="pt").to(0)
82
+
83
+ outputs = model.generate(**inputs, max_new_tokens=20)
84
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
85
+ ```
86
+ </details>
87
+
88
+ ### Load the model with Flash Attention 2
89
+
90
+ <details>
91
+ <summary> Click to expand </summary>
92
+
93
+ ```diff
94
+ + import torch
95
+ from transformers import AutoModelForCausalLM, AutoTokenizer
96
+
97
+ model_id = "mistralai/Mixtral-8x7B-v0.1"
98
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
99
+
100
+ + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True)
101
+
102
+ text = "Hello my name is"
103
+ + inputs = tokenizer(text, return_tensors="pt").to(0)
104
+
105
+ outputs = model.generate(**inputs, max_new_tokens=20)
106
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
107
+ ```
108
+ </details>
109
+
110
+ ## Notice
111
+ Mixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms.
112
+
113
+ # The Mistral AI Team
114
+ Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.