--- language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - Prajwal-143/ASR-Tamil-cleaned metrics: - wer model-index: - name: Whisper-large-v3-en-Log-Tamil results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ' asr-tamil-cleaned' type: Prajwal-143/ASR-Tamil-cleaned metrics: - name: Wer type: wer value: 192.45811803270485 --- # Whisper-large-v3-en-Log-Tamil This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the asr-tamil-cleaned dataset. It achieves the following results on the evaluation set: - Loss: 0.1601 - Wer Ortho: 99.7086 - Wer: 192.4581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:--------:| | 0.1482 | 0.0143 | 500 | 0.1601 | 99.7086 | 192.4581 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1