Upload 4 files
Browse files- B5.csv +0 -0
- Data_analysis.py +72 -0
- basic1.ipynb +0 -0
- bengaluru_home_prices_model.joblib +3 -0
B5.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Data_analysis.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import joblib
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
# Load the model and columns
|
8 |
+
lr_clf = joblib.load("C:/Users/vijay/OneDrive/Desktop/Banglore Housing Project/banglore_home_prices_model.pkl")
|
9 |
+
X_columns = pd.read_csv("C:/Users/vijay/OneDrive/Desktop/Banglore Housing Project/dora.csv")
|
10 |
+
OHE = pd.read_csv("C:/Users/vijay/OneDrive/Desktop/Banglore Housing Project/B5.csv")
|
11 |
+
locations = OHE['location'].tolist()
|
12 |
+
|
13 |
+
# Non-changeable variables
|
14 |
+
bhk1 = 5
|
15 |
+
bath1 = 5
|
16 |
+
|
17 |
+
def predict_price(location, sqft, bath, bhk):
|
18 |
+
loc_index = np.where(X_columns.columns == location)[0][0]
|
19 |
+
|
20 |
+
x = np.zeros(len(X_columns.columns))
|
21 |
+
x[0] = sqft
|
22 |
+
x[1] = bath
|
23 |
+
x[2] = bhk
|
24 |
+
if loc_index >= 0:
|
25 |
+
x[loc_index] = 1
|
26 |
+
|
27 |
+
return lr_clf.predict([x])[0]
|
28 |
+
|
29 |
+
def get_price_predictions(location, sqft, bhk):
|
30 |
+
all_predictions = []
|
31 |
+
for bhk_val in range(1, bhk+1):
|
32 |
+
predictions = []
|
33 |
+
for bath in range(1, 6):
|
34 |
+
price_prediction = predict_price(location, sqft, bath, bhk_val)
|
35 |
+
predictions.append(price_prediction)
|
36 |
+
all_predictions.append(predictions)
|
37 |
+
return all_predictions
|
38 |
+
|
39 |
+
st.title('House Price Prediction')
|
40 |
+
|
41 |
+
# Sidebar with area and location selection
|
42 |
+
sqft = st.sidebar.slider('Select the area in sq meters:', min_value=500.0, max_value=3000.0, value=500.0)
|
43 |
+
location = st.sidebar.selectbox('Select a location:', locations)
|
44 |
+
bhk = st.sidebar.slider('Select BHK (1-5):', min_value=1, max_value=5)
|
45 |
+
bath = st.sidebar.slider('Select Bathrooms (1-5):', min_value=1, max_value=5)
|
46 |
+
|
47 |
+
estimated_price = predict_price(location, sqft, bath, bhk)
|
48 |
+
st.write(f"Estimated Price per sqft : ₹ {estimated_price}")
|
49 |
+
|
50 |
+
# Predict prices for different numbers of BHKs
|
51 |
+
predictions = get_price_predictions(location, sqft, bhk1)
|
52 |
+
|
53 |
+
# Display a spreadsheet-like table of prices
|
54 |
+
prices_table = pd.DataFrame(predictions, columns=[f"{i+1} BHK" for i in range(bhk1)], index=[f"{i} Bathrooms" for i in range(1, bath1+1)])
|
55 |
+
st.table(prices_table)
|
56 |
+
|
57 |
+
# Plot graphs for each number of BHKs
|
58 |
+
fig, axs = plt.subplots(bhk1, 1, figsize=(10, bhk1*5), sharex=True)
|
59 |
+
bath_values = range(1, 6)
|
60 |
+
colors = ['blue', 'green', 'red', 'purple', 'orange'] # Define different colors for each BHK
|
61 |
+
|
62 |
+
for i in range(bhk1):
|
63 |
+
axs[i].plot(bath_values, predictions[i], label=f'{i+1} BHK', color=colors[i]) # Use a different color for each BHK
|
64 |
+
axs[i].set_ylabel('Predicted Price per sqft (in ₹)')
|
65 |
+
axs[i].set_title(f'Predicted Price for {i+1} BHK (in ₹)')
|
66 |
+
axs[i].legend(loc='center left', bbox_to_anchor=(1, 0.5)) # Position legend to the right of the graph
|
67 |
+
|
68 |
+
# Set common x-axis label
|
69 |
+
fig.text(0.5, 0.04, 'Number of Bathrooms', ha='center', va='center')
|
70 |
+
|
71 |
+
plt.tight_layout(pad=3.0)
|
72 |
+
st.pyplot(fig)
|
basic1.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bengaluru_home_prices_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a21c038f98633093c35e411a917b80f03957749071fc57dad433d36a0b46e33
|
3 |
+
size 9440
|