Lokesh1024 commited on
Commit
ff086c8
·
verified ·
1 Parent(s): b400349

Upload 4 files

Browse files
B5.csv ADDED
The diff for this file is too large to render. See raw diff
 
Data_analysis.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import joblib
5
+ import matplotlib.pyplot as plt
6
+
7
+ # Load the model and columns
8
+ lr_clf = joblib.load("C:/Users/vijay/OneDrive/Desktop/Banglore Housing Project/banglore_home_prices_model.pkl")
9
+ X_columns = pd.read_csv("C:/Users/vijay/OneDrive/Desktop/Banglore Housing Project/dora.csv")
10
+ OHE = pd.read_csv("C:/Users/vijay/OneDrive/Desktop/Banglore Housing Project/B5.csv")
11
+ locations = OHE['location'].tolist()
12
+
13
+ # Non-changeable variables
14
+ bhk1 = 5
15
+ bath1 = 5
16
+
17
+ def predict_price(location, sqft, bath, bhk):
18
+ loc_index = np.where(X_columns.columns == location)[0][0]
19
+
20
+ x = np.zeros(len(X_columns.columns))
21
+ x[0] = sqft
22
+ x[1] = bath
23
+ x[2] = bhk
24
+ if loc_index >= 0:
25
+ x[loc_index] = 1
26
+
27
+ return lr_clf.predict([x])[0]
28
+
29
+ def get_price_predictions(location, sqft, bhk):
30
+ all_predictions = []
31
+ for bhk_val in range(1, bhk+1):
32
+ predictions = []
33
+ for bath in range(1, 6):
34
+ price_prediction = predict_price(location, sqft, bath, bhk_val)
35
+ predictions.append(price_prediction)
36
+ all_predictions.append(predictions)
37
+ return all_predictions
38
+
39
+ st.title('House Price Prediction')
40
+
41
+ # Sidebar with area and location selection
42
+ sqft = st.sidebar.slider('Select the area in sq meters:', min_value=500.0, max_value=3000.0, value=500.0)
43
+ location = st.sidebar.selectbox('Select a location:', locations)
44
+ bhk = st.sidebar.slider('Select BHK (1-5):', min_value=1, max_value=5)
45
+ bath = st.sidebar.slider('Select Bathrooms (1-5):', min_value=1, max_value=5)
46
+
47
+ estimated_price = predict_price(location, sqft, bath, bhk)
48
+ st.write(f"Estimated Price per sqft : ₹ {estimated_price}")
49
+
50
+ # Predict prices for different numbers of BHKs
51
+ predictions = get_price_predictions(location, sqft, bhk1)
52
+
53
+ # Display a spreadsheet-like table of prices
54
+ prices_table = pd.DataFrame(predictions, columns=[f"{i+1} BHK" for i in range(bhk1)], index=[f"{i} Bathrooms" for i in range(1, bath1+1)])
55
+ st.table(prices_table)
56
+
57
+ # Plot graphs for each number of BHKs
58
+ fig, axs = plt.subplots(bhk1, 1, figsize=(10, bhk1*5), sharex=True)
59
+ bath_values = range(1, 6)
60
+ colors = ['blue', 'green', 'red', 'purple', 'orange'] # Define different colors for each BHK
61
+
62
+ for i in range(bhk1):
63
+ axs[i].plot(bath_values, predictions[i], label=f'{i+1} BHK', color=colors[i]) # Use a different color for each BHK
64
+ axs[i].set_ylabel('Predicted Price per sqft (in ₹)')
65
+ axs[i].set_title(f'Predicted Price for {i+1} BHK (in ₹)')
66
+ axs[i].legend(loc='center left', bbox_to_anchor=(1, 0.5)) # Position legend to the right of the graph
67
+
68
+ # Set common x-axis label
69
+ fig.text(0.5, 0.04, 'Number of Bathrooms', ha='center', va='center')
70
+
71
+ plt.tight_layout(pad=3.0)
72
+ st.pyplot(fig)
basic1.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
bengaluru_home_prices_model.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a21c038f98633093c35e411a917b80f03957749071fc57dad433d36a0b46e33
3
+ size 9440