LoneStriker
commited on
Commit
•
f0ce5a5
1
Parent(s):
454de00
Upload folder using huggingface_hub
Browse files- README.md +148 -0
- config.json +34 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- model.safetensors.index.json +1 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
README.md
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- BioMistral/BioMistral-7B
|
4 |
+
- mistralai/Mistral-7B-Instruct-v0.1
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- mergekit
|
8 |
+
- merge
|
9 |
+
- slerp
|
10 |
+
- medical
|
11 |
+
- biology
|
12 |
+
license: apache-2.0
|
13 |
+
datasets:
|
14 |
+
- pubmed
|
15 |
+
language:
|
16 |
+
- fr
|
17 |
+
- en
|
18 |
+
- es
|
19 |
+
- it
|
20 |
+
- pl
|
21 |
+
- nl
|
22 |
+
- de
|
23 |
+
pipeline_tag: text-generation
|
24 |
+
---
|
25 |
+
# BioMistral-7B-slerp
|
26 |
+
|
27 |
+
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
|
28 |
+
|
29 |
+
## Merge Details
|
30 |
+
### Merge Method
|
31 |
+
|
32 |
+
This model was merged using the SLERP merge method.
|
33 |
+
|
34 |
+
### Models Merged
|
35 |
+
|
36 |
+
The following models were included in the merge:
|
37 |
+
* [BioMistral/BioMistral-7B](https://huggingface.co/BioMistral/BioMistral-7B)
|
38 |
+
* [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
39 |
+
|
40 |
+
### Configuration
|
41 |
+
|
42 |
+
The following YAML configuration was used to produce this model:
|
43 |
+
|
44 |
+
```yaml
|
45 |
+
|
46 |
+
slices:
|
47 |
+
- sources:
|
48 |
+
- model: mistralai/Mistral-7B-Instruct-v0.1
|
49 |
+
layer_range: [0, 32]
|
50 |
+
- model: BioMistral/BioMistral-7B
|
51 |
+
layer_range: [0, 32]
|
52 |
+
merge_method: slerp
|
53 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.1
|
54 |
+
parameters:
|
55 |
+
t:
|
56 |
+
- filter: self_attn
|
57 |
+
value: [0, 0.5, 0.3, 0.7, 1]
|
58 |
+
- filter: mlp
|
59 |
+
value: [1, 0.5, 0.7, 0.3, 0]
|
60 |
+
- value: 0.5
|
61 |
+
dtype: bfloat16
|
62 |
+
|
63 |
+
```
|
64 |
+
|
65 |
+
|
66 |
+
<p align="center">
|
67 |
+
<img src="https://huggingface.co/BioMistral/BioMistral-7B/resolve/main/wordart_blue_m_rectangle.png?download=true" alt="drawing" width="250"/>
|
68 |
+
</p>
|
69 |
+
|
70 |
+
# BioMistral: A Collection of Open-Source Pretrained Large Language Models for Medical Domains
|
71 |
+
|
72 |
+
**Abstract:**
|
73 |
+
|
74 |
+
Large Language Models (LLMs) have demonstrated remarkable versatility in recent years, offering potential applications across specialized domains such as healthcare and medicine. Despite the availability of various open-source LLMs tailored for health contexts, adapting general-purpose LLMs to the medical domain presents significant challenges.
|
75 |
+
In this paper, we introduce BioMistral, an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model and further pre-trained on PubMed Central. We conduct a comprehensive evaluation of BioMistral on a benchmark comprising 10 established medical question-answering (QA) tasks in English. We also explore lightweight models obtained through quantization and model merging approaches. Our results demonstrate BioMistral's superior performance compared to existing open-source medical models and its competitive edge against proprietary counterparts. Finally, to address the limited availability of data beyond English and to assess the multilingual generalization of medical LLMs, we automatically translated and evaluated this benchmark into 7 other languages. This marks the first large-scale multilingual evaluation of LLMs in the medical domain. Datasets, multilingual evaluation benchmarks, scripts, and all the models obtained during our experiments are freely released.
|
76 |
+
|
77 |
+
# 1. BioMistral models
|
78 |
+
|
79 |
+
**BioMistral** is a suite of Mistral-based further pre-trained open source models suited for the medical domains and pre-trained using textual data from PubMed Central Open Access (CC0, CC BY, CC BY-SA, and CC BY-ND). All the models are trained using the CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/jean-zay/) French HPC.
|
80 |
+
|
81 |
+
| Model Name | Base Model | Model Type | Sequence Length | Download |
|
82 |
+
|:-------------------:|:----------------------------------:|:-------------------:|:---------------:|:-----------------------------------------------------:|
|
83 |
+
| BioMistral-7B | [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | Further Pre-trained | 2048 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B) |
|
84 |
+
| BioMistral-7B-DARE | [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | Merge DARE | 2048 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-DARE) |
|
85 |
+
| BioMistral-7B-TIES | [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | Merge TIES | 2048 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-TIES) |
|
86 |
+
| BioMistral-7B-SLERP | [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | Merge SLERP | 2048 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-SLERP) |
|
87 |
+
|
88 |
+
# 2. Quantized Models
|
89 |
+
|
90 |
+
| Base Model | Method | q_group_size | w_bit | version | VRAM GB | Time | Download |
|
91 |
+
|:-------------------:|:------:|:------------:|:-----:|:-------:|:-------:|:------:|:--------:|
|
92 |
+
| BioMistral-7B | FP16/BF16 | | | | 15.02 | x1.00 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B) |
|
93 |
+
| BioMistral-7B | AWQ | 128 | 4 | GEMM | 4.68 | x1.41 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-AWQ-QGS128-W4-GEMM) |
|
94 |
+
| BioMistral-7B | AWQ | 128 | 4 | GEMV | 4.68 | x10.30 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-AWQ-QGS128-W4-GEMV) |
|
95 |
+
| BioMistral-7B | BnB.4 | | 4 | | 5.03 | x3.25 | [HuggingFace](blank) |
|
96 |
+
| BioMistral-7B | BnB.8 | | 8 | | 8.04 | x4.34 | [HuggingFace](blank) |
|
97 |
+
| BioMistral-7B-DARE | AWQ | 128 | 4 | GEMM | 4.68 | x1.41 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-DARE-AWQ-QGS128-W4-GEMM) |
|
98 |
+
| BioMistral-7B-TIES | AWQ | 128 | 4 | GEMM | 4.68 | x1.41 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-TIES-AWQ-QGS128-W4-GEMM) |
|
99 |
+
| BioMistral-7B-SLERP | AWQ | 128 | 4 | GEMM | 4.68 | x1.41 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-SLERP-AWQ-QGS128-W4-GEMM) |
|
100 |
+
|
101 |
+
# 2. Using BioMistral
|
102 |
+
|
103 |
+
You can use BioMistral with [Hugging Face's Transformers library](https://github.com/huggingface/transformers) as follow.
|
104 |
+
|
105 |
+
Loading the model and tokenizer :
|
106 |
+
|
107 |
+
```python
|
108 |
+
from transformers import AutoModel, AutoTokenizer
|
109 |
+
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained("BioMistral/BioMistral-7B")
|
111 |
+
model = AutoModel.from_pretrained("BioMistral/BioMistral-7B")
|
112 |
+
```
|
113 |
+
|
114 |
+
# 3. Supervised Fine-tuning Benchmark
|
115 |
+
|
116 |
+
| | Clinical KG | Medical Genetics | Anatomy | Pro Medicine | College Biology | College Medicine | MedQA | MedQA 5 opts | PubMedQA | MedMCQA | Avg. |
|
117 |
+
|-------------------------------------------|:---------------------------------------------:|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------|
|
118 |
+
| **BioMistral 7B** | 59.9 | 64.0 | 56.5 | 60.4 | 59.0 | 54.7 | 50.6 | 42.8 | 77.5 | 48.1 | 57.3 |
|
119 |
+
| **Mistral 7B Instruct** | **62.9** | 57.0 | 55.6 | 59.4 | 62.5 | <u>57.2</u> | 42.0 | 40.9 | 75.7 | 46.1 | 55.9 |
|
120 |
+
| | | | | | | | | | | | |
|
121 |
+
| **BioMistral 7B Ensemble** | <u>62.8</u> | 62.7 | <u>57.5</u> | **63.5** | 64.3 | 55.7 | 50.6 | 43.6 | 77.5 | **48.8** | 58.7 |
|
122 |
+
| **BioMistral 7B DARE** | 62.3 | **67.0** | 55.8 | 61.4 | **66.9** | **58.0** | **51.1** | **45.2** | <u>77.7</u> | <u>48.7</u> | **59.4** |
|
123 |
+
| **BioMistral 7B TIES** | 60.1 | <u>65.0</u> | **58.5** | 60.5 | 60.4 | 56.5 | 49.5 | 43.2 | 77.5 | 48.1 | 57.9 |
|
124 |
+
| **BioMistral 7B SLERP** | 62.5 | 64.7 | 55.8 | <u>62.7</u> | <u>64.8</u> | 56.3 | <u>50.8</u> | <u>44.3</u> | **77.8** | 48.6 | <u>58.8</u> |
|
125 |
+
| | | | | | | | | | | | |
|
126 |
+
| **MedAlpaca 7B** | 53.1 | 58.0 | 54.1 | 58.8 | 58.1 | 48.6 | 40.1 | 33.7 | 73.6 | 37.0 | 51.5 |
|
127 |
+
| **PMC-LLaMA 7B** | 24.5 | 27.7 | 35.3 | 17.4 | 30.3 | 23.3 | 25.5 | 20.2 | 72.9 | 26.6 | 30.4 |
|
128 |
+
| **MediTron-7B** | 41.6 | 50.3 | 46.4 | 27.9 | 44.4 | 30.8 | 41.6 | 28.1 | 74.9 | 41.3 | 42.7 |
|
129 |
+
| **BioMedGPT-LM-7B** | 51.4 | 52.0 | 49.4 | 53.3 | 50.7 | 49.1 | 42.5 | 33.9 | 76.8 | 37.6 | 49.7 |
|
130 |
+
| | | | | | | | | | | | |
|
131 |
+
| **GPT-3.5 Turbo 1106*** | 74.71 | 74.00 | 65.92 | 72.79 | 72.91 | 64.73 | 57.71 | 50.82 | 72.66 | 53.79 | 66.0 |
|
132 |
+
|
133 |
+
Supervised Fine-Tuning (SFT) performance of BioMistral 7B models compared to baselines, measured by accuracy (↑) and averaged across 3 random seeds of 3-shot. DARE, TIES, and SLERP are model merging strategies that combine BioMistral 7B and Mistral 7B Instruct. Best model in bold, and second-best underlined. *GPT-3.5 Turbo performances are reported from the 3-shot results without SFT.
|
134 |
+
|
135 |
+
# Citation BibTeX
|
136 |
+
|
137 |
+
Arxiv : [https://arxiv.org/abs/2402.10373](https://arxiv.org/abs/2402.10373)
|
138 |
+
|
139 |
+
```bibtex
|
140 |
+
@misc{labrak2024biomistral,
|
141 |
+
title={BioMistral: A Collection of Open-Source Pretrained Large Language Models for Medical Domains},
|
142 |
+
author={Yanis Labrak and Adrien Bazoge and Emmanuel Morin and Pierre-Antoine Gourraud and Mickael Rouvier and Richard Dufour},
|
143 |
+
year={2024},
|
144 |
+
eprint={2402.10373},
|
145 |
+
archivePrefix={arXiv},
|
146 |
+
primaryClass={cs.CL}
|
147 |
+
}
|
148 |
+
```
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/models/BioMistral-7B-SLERP",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"quantization_config": {
|
19 |
+
"bits": 4,
|
20 |
+
"group_size": 128,
|
21 |
+
"modules_to_not_convert": null,
|
22 |
+
"quant_method": "awq",
|
23 |
+
"version": "gemm",
|
24 |
+
"zero_point": true
|
25 |
+
},
|
26 |
+
"rms_norm_eps": 1e-05,
|
27 |
+
"rope_theta": 10000.0,
|
28 |
+
"sliding_window": 4096,
|
29 |
+
"tie_word_embeddings": false,
|
30 |
+
"torch_dtype": "float16",
|
31 |
+
"transformers_version": "4.37.2",
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 32000
|
34 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.37.2"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31197c27cd0314991c53e24f80e2f6231f6f316e546358f74b7beefb38726885
|
3 |
+
size 4150880232
|
model.safetensors.index.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metadata": {"mergekit_version": "0.0.4"}, "weight_map": {"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.embed_tokens.weight": "model-00001-of-00002.safetensors", "lm_head.weight": "model-00002-of-00002.safetensors", "model.norm.weight": "model-00002-of-00002.safetensors", "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors", "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors", "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors", "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors", "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors", "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors", "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors", "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors", "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors"}}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": null,
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|