LoneStriker
commited on
Commit
•
49a767f
1
Parent(s):
12ae448
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +404 -0
- bagel.png +3 -0
- config.json +30 -0
- generation_config.json +6 -0
- model.safetensors.index.json +1002 -0
- output-00001-of-00003.safetensors +3 -0
- output-00002-of-00003.safetensors +3 -0
- output-00003-of-00003.safetensors +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
bagel.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- ai2_arc
|
5 |
+
- jondurbin/airoboros-3.2
|
6 |
+
- codeparrot/apps
|
7 |
+
- facebook/belebele
|
8 |
+
- boolq
|
9 |
+
- jondurbin/cinematika-v0.1
|
10 |
+
- drop
|
11 |
+
- lmsys/lmsys-chat-1m
|
12 |
+
- TIGER-Lab/MathInstruct
|
13 |
+
- cais/mmlu
|
14 |
+
- Muennighoff/natural-instructions
|
15 |
+
- openbookqa
|
16 |
+
- piqa
|
17 |
+
- Vezora/Tested-22k-Python-Alpaca
|
18 |
+
- cakiki/rosetta-code
|
19 |
+
- Open-Orca/SlimOrca
|
20 |
+
- spider
|
21 |
+
- squad_v2
|
22 |
+
- migtissera/Synthia-v1.3
|
23 |
+
- datasets/winogrande
|
24 |
+
- nvidia/HelpSteer
|
25 |
+
- Intel/orca_dpo_pairs
|
26 |
+
- unalignment/toxic-dpo-v0.1
|
27 |
+
- jondurbin/truthy-dpo-v0.1
|
28 |
+
- allenai/ultrafeedback_binarized_cleaned
|
29 |
+
- Squish42/bluemoon-fandom-1-1-rp-cleaned
|
30 |
+
- LDJnr/Capybara
|
31 |
+
- JULIELab/EmoBank
|
32 |
+
- kingbri/PIPPA-shareGPT
|
33 |
+
---
|
34 |
+
|
35 |
+
# A bagel, with everything (except DPO)
|
36 |
+
|
37 |
+
![bagel](bagel.png)
|
38 |
+
|
39 |
+
## Overview
|
40 |
+
|
41 |
+
An experimental fine-tune of [mixtral-8x7b-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [bagel](https://github.com/jondurbin/bagel)
|
42 |
+
|
43 |
+
This is the model after the SFT phase, before DPO has been applied.
|
44 |
+
|
45 |
+
Hardware kindly provided by [Massed Compute](https://massedcompute.com/?utm_source=huggingface&utm_creative_format=model_card&utm_content=creator_jon)
|
46 |
+
|
47 |
+
### Data sources
|
48 |
+
|
49 |
+
*Yes, you will see benchmark names in the list, but this only uses the train splits, and a decontamination by cosine similarity is performed at the end as a sanity check*
|
50 |
+
|
51 |
+
- [ai2_arc](https://huggingface.co/datasets/ai2_arc)
|
52 |
+
- Abstraction and reasoning dataset, useful in measuring "intelligence" to a certain extent.
|
53 |
+
- [airoboros](https://huggingface.co/datasets/unalignment/spicy-3.1)
|
54 |
+
- Variety of categories of synthetic instructions generated by gpt-4.
|
55 |
+
- [apps](https://huggingface.co/datasets/codeparrot/apps)
|
56 |
+
- Python coding dataset with 10k problems.
|
57 |
+
- [belebele](https://huggingface.co/datasets/facebook/belebele)
|
58 |
+
- Multi-lingual reading comprehension dataset.
|
59 |
+
- [bluemoon](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned)
|
60 |
+
- Roleplay data scraped from Bluemoon, then cleaned and formatted as ShareGPT.
|
61 |
+
- [boolq](https://huggingface.co/datasets/boolq)
|
62 |
+
- Corpus of yes/no questions (which can be surprisingly difficult for AI to answer apparently?)
|
63 |
+
- [capybara](https://huggingface.co/datasets/LDJnr/Capybara)
|
64 |
+
- Multi-turn dataset used to create the capybara models.
|
65 |
+
- [cinematika](https://huggingface.co/datasets/jondurbin/cinematika-v0.1) (instruction and plain text)
|
66 |
+
- RP-style data synthesized from movie scripts so the model isn't quite as boring as it otherwise would be.
|
67 |
+
- [drop](https://huggingface.co/datasets/drop)
|
68 |
+
- More reading comprehension.
|
69 |
+
- [emobank](https://github.com/JULIELab/EmoBank)
|
70 |
+
- Emotion annotations using the Valence-Arousal-Domninance scheme.
|
71 |
+
- [gutenberg](https://www.gutenberg.org/) (plain text)
|
72 |
+
- Books/plain text, again to make the model less boring, only a handful of examples supported by [chapterize](https://github.com/JonathanReeve/chapterize)
|
73 |
+
- [lmsys_chat_1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) (only gpt-4 items, also used for DPO)
|
74 |
+
- Chats collected by the lmsys chat arena, containing a wide variety of chats with various models.
|
75 |
+
- [mathinstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
|
76 |
+
- Composite dataset with a variety of math-related tasks and problem/question formats.
|
77 |
+
- [mmlu](https://huggingface.co/datasets/cais/mmlu)
|
78 |
+
- Massive Multitask Language Understanding - a wide variety of questions about various subject matters.
|
79 |
+
- [natural_instructions](https://huggingface.co/datasets/Muennighoff/natural-instructions)
|
80 |
+
- Millions of instructions from 1600+ task categories (sampled down substantially, stratified by task type)
|
81 |
+
- [openbookqa](https://huggingface.co/datasets/openbookqa)
|
82 |
+
- Question answering dataset.
|
83 |
+
- [pippa](https://huggingface.co/datasets/kingbri/PIPPA-shareGPT)
|
84 |
+
- Deduped version of [PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA) in ShareGPT format.
|
85 |
+
- [piqa](https://huggingface.co/datasets/piqa)
|
86 |
+
- Phyiscal interaction question answering.
|
87 |
+
- [python_alpaca](https://huggingface.co/datasets/Vezora/Tested-22k-Python-Alpaca)
|
88 |
+
- Python instruction response pairs, validated as functional.
|
89 |
+
- [rosetta_code](https://huggingface.co/datasets/cakiki/rosetta-code)
|
90 |
+
- Code problems and solutions in a variety of programming languages taken from rosettacode.org.
|
91 |
+
- [slimorca](https://huggingface.co/datasets/Open-Orca/SlimOrca)
|
92 |
+
- Collection of ~500k gpt-4 verified chats from OpenOrca.
|
93 |
+
- [spider](https://huggingface.co/datasets/spider)
|
94 |
+
- SQL-targeted dataset.
|
95 |
+
- [squad_v2](https://huggingface.co/datasets/squad_v2)
|
96 |
+
- Contextual question answering (RAG).
|
97 |
+
- [synthia](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
|
98 |
+
- GPT-4 generated data using advanced prompting from Migel Tissera.
|
99 |
+
- [winogrande](https://huggingface.co/datasets/winogrande)
|
100 |
+
- Fill in the blank style prompts.
|
101 |
+
|
102 |
+
Only the train splits were used (if a split was provided), and an additional pass of decontamination is performed using approximate nearest neighbor search (via faiss).
|
103 |
+
|
104 |
+
## Prompt formatting
|
105 |
+
|
106 |
+
In sticking with the theme of the bagel, I didn't want to use a single prompt format, so I used 4 - vicuna, llama-2, alpaca, and chat-ml (sorta).
|
107 |
+
I also didn't want to randomly select a single prompt format for each item (hoping each instruction would generalize more when used in a variety of prompt formats), so each instruction is actually converted into every prompt format.
|
108 |
+
|
109 |
+
This means each epoch of our fine-tune is really basically 4 epochs. So, for the fine-tunes, I would recommend only doing 1 epoch (or 0.75 epochs). I am testing with a single epoch using a relatively low learning rate.
|
110 |
+
|
111 |
+
### Alpaca (sort of)
|
112 |
+
|
113 |
+
```
|
114 |
+
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
115 |
+
|
116 |
+
### Instruction:
|
117 |
+
{system prompt, if provided}
|
118 |
+
{instruction}
|
119 |
+
|
120 |
+
### Response:
|
121 |
+
```
|
122 |
+
|
123 |
+
The main difference here is that because of the dataset formatting and variety of data sources, it would have been much to tedious to add an `### Input:` block, so the inputs are just in the instruction section.
|
124 |
+
|
125 |
+
### Vicuna
|
126 |
+
|
127 |
+
```
|
128 |
+
{system prompt, if provided, randomly defaulting to "A chat between a user and an unbiased, uncensored assistant."}
|
129 |
+
USER: {instruction}
|
130 |
+
ASSISTANT:
|
131 |
+
```
|
132 |
+
|
133 |
+
### ChatML (sort of)
|
134 |
+
|
135 |
+
I don't really understand the point of having special tokens for `<|im_start|>` and `<|im_end|>`, because in practice they just act as BOS and EOS tokens (but, please correct me if I'm wrong).
|
136 |
+
|
137 |
+
So, instead of:
|
138 |
+
```text
|
139 |
+
{bos}<|im_start|>{role}
|
140 |
+
{text}
|
141 |
+
<|im_end|>{eos}
|
142 |
+
```
|
143 |
+
|
144 |
+
I just changed it to:
|
145 |
+
```text
|
146 |
+
{bos}{role}
|
147 |
+
{text}
|
148 |
+
{eos}
|
149 |
+
```
|
150 |
+
|
151 |
+
If you *really* want to use `<|im_start|>` and `<|im_end|>`, just update your `tokenizer_config.json` to use `<|im_start|>` instead of `<s>` and `<|im_end|>` instead of `</s>` and when tokenizing. And if you still don't like what I've done to this chat-ml-ish format, feel free to cry into your pillow or fork the code and do a new fine-tune.
|
152 |
+
|
153 |
+
### Llama-2 chat
|
154 |
+
|
155 |
+
```
|
156 |
+
[INST] <<SYS>>
|
157 |
+
{system}
|
158 |
+
<</SYS>>
|
159 |
+
|
160 |
+
{instruction} [/INST]
|
161 |
+
```
|
162 |
+
|
163 |
+
### Default via chat template
|
164 |
+
|
165 |
+
The model's `tokenizer_config.json` includes the default chat template (llama-2), so you can simply use the `apply_chat_template` method to build the full prompt.
|
166 |
+
|
167 |
+
```
|
168 |
+
import transformers
|
169 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained('jondurbin/bagel-8x7b-v0.2')
|
170 |
+
chat = [
|
171 |
+
{"role": "system", "content": "You are Bob, a friendly AI assistant."},
|
172 |
+
{"role": "user", "content": "Hello, how are you?"},
|
173 |
+
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
|
174 |
+
{"role": "user", "content": "I'd like to show off how chat templating works!"},
|
175 |
+
]
|
176 |
+
print(tokenizer.apply_chat_template(chat, tokenize=False))
|
177 |
+
```
|
178 |
+
|
179 |
+
### Contribute
|
180 |
+
|
181 |
+
If you're interested in new functionality/datasets, take a look at [bagel repo](https://github.com/jondurbin/bagel) and either make a PR or open an issue with details.
|
182 |
+
|
183 |
+
To help me with the fine-tuning costs (which are extremely expensive for these large combined datasets):
|
184 |
+
|
185 |
+
- https://bmc.link/jondurbin
|
186 |
+
- ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
|
187 |
+
- BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf
|
188 |
+
|
189 |
+
### Guide for certain tasks
|
190 |
+
|
191 |
+
#### RA(G)/contextual question answering
|
192 |
+
|
193 |
+
The model was trained to ignore what it thinks it knows, and uses the context to answer the questions, when using the format below.
|
194 |
+
The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.
|
195 |
+
|
196 |
+
The format for a contextual prompt is as follows:
|
197 |
+
```
|
198 |
+
BEGININPUT
|
199 |
+
BEGINCONTEXT
|
200 |
+
[key0: value0]
|
201 |
+
[key1: value1]
|
202 |
+
... other metdata ...
|
203 |
+
ENDCONTEXT
|
204 |
+
[insert your text blocks here]
|
205 |
+
ENDINPUT
|
206 |
+
[add as many other blocks, in the exact same format]
|
207 |
+
BEGININSTRUCTION
|
208 |
+
[insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
|
209 |
+
ENDINSTRUCTION
|
210 |
+
```
|
211 |
+
|
212 |
+
I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
|
213 |
+
- `BEGININPUT` - denotes a new input block
|
214 |
+
- `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
|
215 |
+
- `ENDCONTEXT` - denotes the end of the metadata block for the current input
|
216 |
+
- [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
|
217 |
+
- `ENDINPUT` - denotes the end of the current input block
|
218 |
+
- [repeat as many input blocks in this format as you want]
|
219 |
+
- `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
|
220 |
+
- [instruction(s)]
|
221 |
+
- `ENDINSTRUCTION` - denotes the end of instruction set
|
222 |
+
|
223 |
+
__Use a very low temperature!__
|
224 |
+
|
225 |
+
Here's a trivial, but important example to prove the point:
|
226 |
+
```
|
227 |
+
BEGININPUT
|
228 |
+
BEGINCONTEXT
|
229 |
+
date: 2021-01-01
|
230 |
+
url: https://web.site/123
|
231 |
+
ENDCONTEXT
|
232 |
+
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
|
233 |
+
ENDINPUT
|
234 |
+
BEGININSTRUCTION
|
235 |
+
What color are bluberries? Source?
|
236 |
+
ENDINSTRUCTION
|
237 |
+
```
|
238 |
+
|
239 |
+
And the response:
|
240 |
+
```
|
241 |
+
Blueberries are now green.
|
242 |
+
Source:
|
243 |
+
date: 2021-01-01
|
244 |
+
url: https://web.site/123
|
245 |
+
```
|
246 |
+
|
247 |
+
#### Summarization
|
248 |
+
|
249 |
+
500 samples have been included from [this dataset](https://huggingface.co/datasets/mattpscott/airoboros-summarization), using the same format as contextual question answering, for example:
|
250 |
+
|
251 |
+
```
|
252 |
+
BEGININPUT
|
253 |
+
{text to summarize}
|
254 |
+
ENDINPUT
|
255 |
+
BEGININSTRUCTION
|
256 |
+
Summarize the input in around 130 words.
|
257 |
+
ENDINSTRUCTION
|
258 |
+
```
|
259 |
+
|
260 |
+
#### Agent/function calling
|
261 |
+
|
262 |
+
The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML.
|
263 |
+
|
264 |
+
Example prompt:
|
265 |
+
```
|
266 |
+
As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
|
267 |
+
|
268 |
+
Input: I want to know how many times 'Python' is mentioned in my text file.
|
269 |
+
|
270 |
+
Available functions:
|
271 |
+
file_analytics:
|
272 |
+
description: This tool performs various operations on a text file.
|
273 |
+
params:
|
274 |
+
action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
|
275 |
+
filters:
|
276 |
+
keyword: The word or phrase we want to search for.
|
277 |
+
```
|
278 |
+
|
279 |
+
Response:
|
280 |
+
```json
|
281 |
+
{
|
282 |
+
"function": "file_analytics",
|
283 |
+
"params": {
|
284 |
+
"action": "count_occurrences",
|
285 |
+
"filters": {
|
286 |
+
"keyword": "Python"
|
287 |
+
}
|
288 |
+
}
|
289 |
+
}
|
290 |
+
```
|
291 |
+
|
292 |
+
#### reWOO style execution planning
|
293 |
+
|
294 |
+
The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions!
|
295 |
+
|
296 |
+
Example prompt:
|
297 |
+
```
|
298 |
+
Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
|
299 |
+
that could be the user's question, one or more prior evidence values, or a combination of both.
|
300 |
+
|
301 |
+
Here are the tools available to be called:
|
302 |
+
DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
|
303 |
+
TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
|
304 |
+
HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
|
305 |
+
KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?
|
306 |
+
|
307 |
+
The output should be in format:
|
308 |
+
Plan: [first action to take based on input question]
|
309 |
+
:evidence0: = [function to call with input parameter]
|
310 |
+
Plan: [next action to take, based on result of :evidence0:]
|
311 |
+
:evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
|
312 |
+
...
|
313 |
+
Answer: [:evidence[n]: containing the final answer.]
|
314 |
+
|
315 |
+
Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
|
316 |
+
```
|
317 |
+
|
318 |
+
Response:
|
319 |
+
```
|
320 |
+
Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020.
|
321 |
+
:evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner]
|
322 |
+
Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate.
|
323 |
+
:evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?]
|
324 |
+
Plan: Conduct another web search to find the most famous work of the identified laureate.
|
325 |
+
:evidence2: = DuckDuckGo[Most famous work of :evidence1:]
|
326 |
+
Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search.
|
327 |
+
:evidence3: = HyperlinkExtractor[:evidence2:]
|
328 |
+
Plan: Use the TextScraper tool to extract information from the relevant links.
|
329 |
+
:evidence4: = TextScraper[:evidence3:]
|
330 |
+
Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information.
|
331 |
+
:evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?]
|
332 |
+
Answer: :evidence5:
|
333 |
+
```
|
334 |
+
|
335 |
+
For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening:
|
336 |
+
|
337 |
+
```python
|
338 |
+
import re
|
339 |
+
import requests
|
340 |
+
|
341 |
+
def inject_context(input_text, **context):
|
342 |
+
for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)):
|
343 |
+
input_text = input_text.replace(ref, context.get(ref, ""))
|
344 |
+
return input_text
|
345 |
+
|
346 |
+
def duckduckgo(input_text, **context):
|
347 |
+
search_string = inject_context(input_text, **context)
|
348 |
+
... search via duck duck go using search_string
|
349 |
+
... return text content
|
350 |
+
|
351 |
+
def link_extractor(input_text, **context):
|
352 |
+
input_text = inject_context(input_text, **context)
|
353 |
+
return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I))))
|
354 |
+
|
355 |
+
def scrape(input_text, **context):
|
356 |
+
input_text = inject_context(input_text, **context)
|
357 |
+
text = []
|
358 |
+
for link in input_text.splitlines():
|
359 |
+
text.append(requests.get(link).text)
|
360 |
+
return "\n".join(text)
|
361 |
+
|
362 |
+
def infer(input_text, **context)
|
363 |
+
prompt = inject_context(input_text, **context)
|
364 |
+
... call model with prompt, return output
|
365 |
+
|
366 |
+
def parse_plan(plan):
|
367 |
+
method_map = {
|
368 |
+
"DuckDuckGo": duckduckgo,
|
369 |
+
"HyperlinkExtractor": link_extractor,
|
370 |
+
"KnowledgeModel": infer,
|
371 |
+
"TextScraper": scrape,
|
372 |
+
}
|
373 |
+
context = {}
|
374 |
+
for line in plan.strip().splitlines():
|
375 |
+
if line.startswith("Plan:"):
|
376 |
+
print(line)
|
377 |
+
continue
|
378 |
+
parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I)
|
379 |
+
if not parts:
|
380 |
+
if line.startswith("Answer: "):
|
381 |
+
return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...")
|
382 |
+
raise RuntimeError("bad format: " + line)
|
383 |
+
context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context)
|
384 |
+
```
|
385 |
+
|
386 |
+
### Fine-tuning information
|
387 |
+
|
388 |
+
You can find charts, and the full configuration used to fine-tune this model on [weights and biases](https://wandb.ai/jondurbin/bagel-8x7b-v0.2/runs/agxjjdso?workspace=user-jondurbin)
|
389 |
+
|
390 |
+
The model was fine-tuned on an 8x a6000 instance, for 4 days, 15 hours, 6 minutes and 42 seconds.
|
391 |
+
|
392 |
+
### Licence and usage restrictions
|
393 |
+
|
394 |
+
The base model is mixtral-8x7b-v0.1, which is licensed as apache-2.0 - no issues there.
|
395 |
+
|
396 |
+
The fine-tuning data, however, includes several datasets that have data generated at least in part by OpenAI's gpt-4.
|
397 |
+
|
398 |
+
I am not a lawyer, so I can't help determine if this is actually commercially viable, but some questions that often come up are:
|
399 |
+
|
400 |
+
- Does the OpenAI ToS apply only to the user who created the dataset initially, and not subsequent models?
|
401 |
+
- If the dataset was released under a permissive license, but actually includes OpenAI generated data, does that ToS supersede the license?
|
402 |
+
- Does the dataset fall completely under fair use anyways, since the model isn't really capable of reproducing the entire training set verbatim?
|
403 |
+
|
404 |
+
Use your best judgement and seek legal advice if you are concerned about the terms. In any case, by using this model, you agree to completely indemnify me.
|
bagel.png
ADDED
Git LFS Details
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bagel-8x7b-v0.2",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mixtral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_experts_per_tok": 2,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"num_local_experts": 8,
|
20 |
+
"output_router_logits": false,
|
21 |
+
"rms_norm_eps": 1e-05,
|
22 |
+
"rope_theta": 1000000.0,
|
23 |
+
"router_aux_loss_coef": 0.02,
|
24 |
+
"sliding_window": null,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.37.0.dev0",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 32000
|
30 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.37.0.dev0"
|
6 |
+
}
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,1002 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 93405585408
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00024-of-00024.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00024.safetensors",
|
8 |
+
"model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00024.safetensors",
|
9 |
+
"model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00024.safetensors",
|
10 |
+
"model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00024.safetensors",
|
11 |
+
"model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00024.safetensors",
|
12 |
+
"model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00024.safetensors",
|
13 |
+
"model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00024.safetensors",
|
14 |
+
"model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00024.safetensors",
|
15 |
+
"model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00024.safetensors",
|
16 |
+
"model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00024.safetensors",
|
17 |
+
"model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00024.safetensors",
|
18 |
+
"model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00024.safetensors",
|
19 |
+
"model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00024.safetensors",
|
20 |
+
"model.layers.0.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00024.safetensors",
|
21 |
+
"model.layers.0.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00024.safetensors",
|
22 |
+
"model.layers.0.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00024.safetensors",
|
23 |
+
"model.layers.0.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00024.safetensors",
|
24 |
+
"model.layers.0.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00024.safetensors",
|
25 |
+
"model.layers.0.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00024.safetensors",
|
26 |
+
"model.layers.0.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00024.safetensors",
|
27 |
+
"model.layers.0.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00024.safetensors",
|
28 |
+
"model.layers.0.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00024.safetensors",
|
29 |
+
"model.layers.0.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00024.safetensors",
|
30 |
+
"model.layers.0.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00024.safetensors",
|
31 |
+
"model.layers.0.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00024.safetensors",
|
32 |
+
"model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00024.safetensors",
|
33 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00024.safetensors",
|
34 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00024.safetensors",
|
35 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00024.safetensors",
|
36 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00024.safetensors",
|
37 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00024.safetensors",
|
38 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00024.safetensors",
|
39 |
+
"model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00024.safetensors",
|
40 |
+
"model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00024.safetensors",
|
41 |
+
"model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00024.safetensors",
|
42 |
+
"model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00024.safetensors",
|
43 |
+
"model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00024.safetensors",
|
44 |
+
"model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00024.safetensors",
|
45 |
+
"model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00024.safetensors",
|
46 |
+
"model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00024.safetensors",
|
47 |
+
"model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00024.safetensors",
|
48 |
+
"model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00024.safetensors",
|
49 |
+
"model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00024.safetensors",
|
50 |
+
"model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00024.safetensors",
|
51 |
+
"model.layers.1.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00024.safetensors",
|
52 |
+
"model.layers.1.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00024.safetensors",
|
53 |
+
"model.layers.1.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00024.safetensors",
|
54 |
+
"model.layers.1.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00024.safetensors",
|
55 |
+
"model.layers.1.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00024.safetensors",
|
56 |
+
"model.layers.1.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00024.safetensors",
|
57 |
+
"model.layers.1.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00024.safetensors",
|
58 |
+
"model.layers.1.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00024.safetensors",
|
59 |
+
"model.layers.1.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00024.safetensors",
|
60 |
+
"model.layers.1.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00024.safetensors",
|
61 |
+
"model.layers.1.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00024.safetensors",
|
62 |
+
"model.layers.1.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00024.safetensors",
|
63 |
+
"model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00024.safetensors",
|
64 |
+
"model.layers.1.input_layernorm.weight": "model-00002-of-00024.safetensors",
|
65 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00002-of-00024.safetensors",
|
66 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00024.safetensors",
|
67 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00024.safetensors",
|
68 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00024.safetensors",
|
69 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00024.safetensors",
|
70 |
+
"model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00008-of-00024.safetensors",
|
71 |
+
"model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00008-of-00024.safetensors",
|
72 |
+
"model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00008-of-00024.safetensors",
|
73 |
+
"model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00008-of-00024.safetensors",
|
74 |
+
"model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00008-of-00024.safetensors",
|
75 |
+
"model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00008-of-00024.safetensors",
|
76 |
+
"model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00008-of-00024.safetensors",
|
77 |
+
"model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00008-of-00024.safetensors",
|
78 |
+
"model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00008-of-00024.safetensors",
|
79 |
+
"model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00008-of-00024.safetensors",
|
80 |
+
"model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00008-of-00024.safetensors",
|
81 |
+
"model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00008-of-00024.safetensors",
|
82 |
+
"model.layers.10.block_sparse_moe.experts.4.w1.weight": "model-00008-of-00024.safetensors",
|
83 |
+
"model.layers.10.block_sparse_moe.experts.4.w2.weight": "model-00008-of-00024.safetensors",
|
84 |
+
"model.layers.10.block_sparse_moe.experts.4.w3.weight": "model-00008-of-00024.safetensors",
|
85 |
+
"model.layers.10.block_sparse_moe.experts.5.w1.weight": "model-00008-of-00024.safetensors",
|
86 |
+
"model.layers.10.block_sparse_moe.experts.5.w2.weight": "model-00008-of-00024.safetensors",
|
87 |
+
"model.layers.10.block_sparse_moe.experts.5.w3.weight": "model-00008-of-00024.safetensors",
|
88 |
+
"model.layers.10.block_sparse_moe.experts.6.w1.weight": "model-00008-of-00024.safetensors",
|
89 |
+
"model.layers.10.block_sparse_moe.experts.6.w2.weight": "model-00009-of-00024.safetensors",
|
90 |
+
"model.layers.10.block_sparse_moe.experts.6.w3.weight": "model-00009-of-00024.safetensors",
|
91 |
+
"model.layers.10.block_sparse_moe.experts.7.w1.weight": "model-00009-of-00024.safetensors",
|
92 |
+
"model.layers.10.block_sparse_moe.experts.7.w2.weight": "model-00009-of-00024.safetensors",
|
93 |
+
"model.layers.10.block_sparse_moe.experts.7.w3.weight": "model-00009-of-00024.safetensors",
|
94 |
+
"model.layers.10.block_sparse_moe.gate.weight": "model-00008-of-00024.safetensors",
|
95 |
+
"model.layers.10.input_layernorm.weight": "model-00009-of-00024.safetensors",
|
96 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00009-of-00024.safetensors",
|
97 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00008-of-00024.safetensors",
|
98 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00008-of-00024.safetensors",
|
99 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00008-of-00024.safetensors",
|
100 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00008-of-00024.safetensors",
|
101 |
+
"model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00009-of-00024.safetensors",
|
102 |
+
"model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00009-of-00024.safetensors",
|
103 |
+
"model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00009-of-00024.safetensors",
|
104 |
+
"model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00009-of-00024.safetensors",
|
105 |
+
"model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00009-of-00024.safetensors",
|
106 |
+
"model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00009-of-00024.safetensors",
|
107 |
+
"model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00009-of-00024.safetensors",
|
108 |
+
"model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00009-of-00024.safetensors",
|
109 |
+
"model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00009-of-00024.safetensors",
|
110 |
+
"model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00009-of-00024.safetensors",
|
111 |
+
"model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00009-of-00024.safetensors",
|
112 |
+
"model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00009-of-00024.safetensors",
|
113 |
+
"model.layers.11.block_sparse_moe.experts.4.w1.weight": "model-00009-of-00024.safetensors",
|
114 |
+
"model.layers.11.block_sparse_moe.experts.4.w2.weight": "model-00009-of-00024.safetensors",
|
115 |
+
"model.layers.11.block_sparse_moe.experts.4.w3.weight": "model-00009-of-00024.safetensors",
|
116 |
+
"model.layers.11.block_sparse_moe.experts.5.w1.weight": "model-00009-of-00024.safetensors",
|
117 |
+
"model.layers.11.block_sparse_moe.experts.5.w2.weight": "model-00009-of-00024.safetensors",
|
118 |
+
"model.layers.11.block_sparse_moe.experts.5.w3.weight": "model-00009-of-00024.safetensors",
|
119 |
+
"model.layers.11.block_sparse_moe.experts.6.w1.weight": "model-00009-of-00024.safetensors",
|
120 |
+
"model.layers.11.block_sparse_moe.experts.6.w2.weight": "model-00009-of-00024.safetensors",
|
121 |
+
"model.layers.11.block_sparse_moe.experts.6.w3.weight": "model-00009-of-00024.safetensors",
|
122 |
+
"model.layers.11.block_sparse_moe.experts.7.w1.weight": "model-00009-of-00024.safetensors",
|
123 |
+
"model.layers.11.block_sparse_moe.experts.7.w2.weight": "model-00009-of-00024.safetensors",
|
124 |
+
"model.layers.11.block_sparse_moe.experts.7.w3.weight": "model-00009-of-00024.safetensors",
|
125 |
+
"model.layers.11.block_sparse_moe.gate.weight": "model-00009-of-00024.safetensors",
|
126 |
+
"model.layers.11.input_layernorm.weight": "model-00009-of-00024.safetensors",
|
127 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00009-of-00024.safetensors",
|
128 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00009-of-00024.safetensors",
|
129 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00009-of-00024.safetensors",
|
130 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00009-of-00024.safetensors",
|
131 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00009-of-00024.safetensors",
|
132 |
+
"model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00009-of-00024.safetensors",
|
133 |
+
"model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00009-of-00024.safetensors",
|
134 |
+
"model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00009-of-00024.safetensors",
|
135 |
+
"model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00010-of-00024.safetensors",
|
136 |
+
"model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00010-of-00024.safetensors",
|
137 |
+
"model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00010-of-00024.safetensors",
|
138 |
+
"model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00010-of-00024.safetensors",
|
139 |
+
"model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00010-of-00024.safetensors",
|
140 |
+
"model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00010-of-00024.safetensors",
|
141 |
+
"model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00010-of-00024.safetensors",
|
142 |
+
"model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00010-of-00024.safetensors",
|
143 |
+
"model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00010-of-00024.safetensors",
|
144 |
+
"model.layers.12.block_sparse_moe.experts.4.w1.weight": "model-00010-of-00024.safetensors",
|
145 |
+
"model.layers.12.block_sparse_moe.experts.4.w2.weight": "model-00010-of-00024.safetensors",
|
146 |
+
"model.layers.12.block_sparse_moe.experts.4.w3.weight": "model-00010-of-00024.safetensors",
|
147 |
+
"model.layers.12.block_sparse_moe.experts.5.w1.weight": "model-00010-of-00024.safetensors",
|
148 |
+
"model.layers.12.block_sparse_moe.experts.5.w2.weight": "model-00010-of-00024.safetensors",
|
149 |
+
"model.layers.12.block_sparse_moe.experts.5.w3.weight": "model-00010-of-00024.safetensors",
|
150 |
+
"model.layers.12.block_sparse_moe.experts.6.w1.weight": "model-00010-of-00024.safetensors",
|
151 |
+
"model.layers.12.block_sparse_moe.experts.6.w2.weight": "model-00010-of-00024.safetensors",
|
152 |
+
"model.layers.12.block_sparse_moe.experts.6.w3.weight": "model-00010-of-00024.safetensors",
|
153 |
+
"model.layers.12.block_sparse_moe.experts.7.w1.weight": "model-00010-of-00024.safetensors",
|
154 |
+
"model.layers.12.block_sparse_moe.experts.7.w2.weight": "model-00010-of-00024.safetensors",
|
155 |
+
"model.layers.12.block_sparse_moe.experts.7.w3.weight": "model-00010-of-00024.safetensors",
|
156 |
+
"model.layers.12.block_sparse_moe.gate.weight": "model-00009-of-00024.safetensors",
|
157 |
+
"model.layers.12.input_layernorm.weight": "model-00010-of-00024.safetensors",
|
158 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00010-of-00024.safetensors",
|
159 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00009-of-00024.safetensors",
|
160 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00009-of-00024.safetensors",
|
161 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00009-of-00024.safetensors",
|
162 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00009-of-00024.safetensors",
|
163 |
+
"model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00010-of-00024.safetensors",
|
164 |
+
"model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00010-of-00024.safetensors",
|
165 |
+
"model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00010-of-00024.safetensors",
|
166 |
+
"model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00010-of-00024.safetensors",
|
167 |
+
"model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00010-of-00024.safetensors",
|
168 |
+
"model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00010-of-00024.safetensors",
|
169 |
+
"model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00010-of-00024.safetensors",
|
170 |
+
"model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00010-of-00024.safetensors",
|
171 |
+
"model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00010-of-00024.safetensors",
|
172 |
+
"model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00010-of-00024.safetensors",
|
173 |
+
"model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00010-of-00024.safetensors",
|
174 |
+
"model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00010-of-00024.safetensors",
|
175 |
+
"model.layers.13.block_sparse_moe.experts.4.w1.weight": "model-00011-of-00024.safetensors",
|
176 |
+
"model.layers.13.block_sparse_moe.experts.4.w2.weight": "model-00011-of-00024.safetensors",
|
177 |
+
"model.layers.13.block_sparse_moe.experts.4.w3.weight": "model-00011-of-00024.safetensors",
|
178 |
+
"model.layers.13.block_sparse_moe.experts.5.w1.weight": "model-00011-of-00024.safetensors",
|
179 |
+
"model.layers.13.block_sparse_moe.experts.5.w2.weight": "model-00011-of-00024.safetensors",
|
180 |
+
"model.layers.13.block_sparse_moe.experts.5.w3.weight": "model-00011-of-00024.safetensors",
|
181 |
+
"model.layers.13.block_sparse_moe.experts.6.w1.weight": "model-00011-of-00024.safetensors",
|
182 |
+
"model.layers.13.block_sparse_moe.experts.6.w2.weight": "model-00011-of-00024.safetensors",
|
183 |
+
"model.layers.13.block_sparse_moe.experts.6.w3.weight": "model-00011-of-00024.safetensors",
|
184 |
+
"model.layers.13.block_sparse_moe.experts.7.w1.weight": "model-00011-of-00024.safetensors",
|
185 |
+
"model.layers.13.block_sparse_moe.experts.7.w2.weight": "model-00011-of-00024.safetensors",
|
186 |
+
"model.layers.13.block_sparse_moe.experts.7.w3.weight": "model-00011-of-00024.safetensors",
|
187 |
+
"model.layers.13.block_sparse_moe.gate.weight": "model-00010-of-00024.safetensors",
|
188 |
+
"model.layers.13.input_layernorm.weight": "model-00011-of-00024.safetensors",
|
189 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00011-of-00024.safetensors",
|
190 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00010-of-00024.safetensors",
|
191 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00010-of-00024.safetensors",
|
192 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00010-of-00024.safetensors",
|
193 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00010-of-00024.safetensors",
|
194 |
+
"model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00011-of-00024.safetensors",
|
195 |
+
"model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00011-of-00024.safetensors",
|
196 |
+
"model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00011-of-00024.safetensors",
|
197 |
+
"model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00011-of-00024.safetensors",
|
198 |
+
"model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00011-of-00024.safetensors",
|
199 |
+
"model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00011-of-00024.safetensors",
|
200 |
+
"model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00011-of-00024.safetensors",
|
201 |
+
"model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00011-of-00024.safetensors",
|
202 |
+
"model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00011-of-00024.safetensors",
|
203 |
+
"model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00011-of-00024.safetensors",
|
204 |
+
"model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00011-of-00024.safetensors",
|
205 |
+
"model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00011-of-00024.safetensors",
|
206 |
+
"model.layers.14.block_sparse_moe.experts.4.w1.weight": "model-00011-of-00024.safetensors",
|
207 |
+
"model.layers.14.block_sparse_moe.experts.4.w2.weight": "model-00011-of-00024.safetensors",
|
208 |
+
"model.layers.14.block_sparse_moe.experts.4.w3.weight": "model-00011-of-00024.safetensors",
|
209 |
+
"model.layers.14.block_sparse_moe.experts.5.w1.weight": "model-00011-of-00024.safetensors",
|
210 |
+
"model.layers.14.block_sparse_moe.experts.5.w2.weight": "model-00011-of-00024.safetensors",
|
211 |
+
"model.layers.14.block_sparse_moe.experts.5.w3.weight": "model-00011-of-00024.safetensors",
|
212 |
+
"model.layers.14.block_sparse_moe.experts.6.w1.weight": "model-00011-of-00024.safetensors",
|
213 |
+
"model.layers.14.block_sparse_moe.experts.6.w2.weight": "model-00011-of-00024.safetensors",
|
214 |
+
"model.layers.14.block_sparse_moe.experts.6.w3.weight": "model-00011-of-00024.safetensors",
|
215 |
+
"model.layers.14.block_sparse_moe.experts.7.w1.weight": "model-00012-of-00024.safetensors",
|
216 |
+
"model.layers.14.block_sparse_moe.experts.7.w2.weight": "model-00012-of-00024.safetensors",
|
217 |
+
"model.layers.14.block_sparse_moe.experts.7.w3.weight": "model-00012-of-00024.safetensors",
|
218 |
+
"model.layers.14.block_sparse_moe.gate.weight": "model-00011-of-00024.safetensors",
|
219 |
+
"model.layers.14.input_layernorm.weight": "model-00012-of-00024.safetensors",
|
220 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00012-of-00024.safetensors",
|
221 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00011-of-00024.safetensors",
|
222 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00011-of-00024.safetensors",
|
223 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00011-of-00024.safetensors",
|
224 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00011-of-00024.safetensors",
|
225 |
+
"model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00012-of-00024.safetensors",
|
226 |
+
"model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00012-of-00024.safetensors",
|
227 |
+
"model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00012-of-00024.safetensors",
|
228 |
+
"model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00012-of-00024.safetensors",
|
229 |
+
"model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00012-of-00024.safetensors",
|
230 |
+
"model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00012-of-00024.safetensors",
|
231 |
+
"model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00012-of-00024.safetensors",
|
232 |
+
"model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00012-of-00024.safetensors",
|
233 |
+
"model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00012-of-00024.safetensors",
|
234 |
+
"model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00012-of-00024.safetensors",
|
235 |
+
"model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00012-of-00024.safetensors",
|
236 |
+
"model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00012-of-00024.safetensors",
|
237 |
+
"model.layers.15.block_sparse_moe.experts.4.w1.weight": "model-00012-of-00024.safetensors",
|
238 |
+
"model.layers.15.block_sparse_moe.experts.4.w2.weight": "model-00012-of-00024.safetensors",
|
239 |
+
"model.layers.15.block_sparse_moe.experts.4.w3.weight": "model-00012-of-00024.safetensors",
|
240 |
+
"model.layers.15.block_sparse_moe.experts.5.w1.weight": "model-00012-of-00024.safetensors",
|
241 |
+
"model.layers.15.block_sparse_moe.experts.5.w2.weight": "model-00012-of-00024.safetensors",
|
242 |
+
"model.layers.15.block_sparse_moe.experts.5.w3.weight": "model-00012-of-00024.safetensors",
|
243 |
+
"model.layers.15.block_sparse_moe.experts.6.w1.weight": "model-00012-of-00024.safetensors",
|
244 |
+
"model.layers.15.block_sparse_moe.experts.6.w2.weight": "model-00012-of-00024.safetensors",
|
245 |
+
"model.layers.15.block_sparse_moe.experts.6.w3.weight": "model-00012-of-00024.safetensors",
|
246 |
+
"model.layers.15.block_sparse_moe.experts.7.w1.weight": "model-00012-of-00024.safetensors",
|
247 |
+
"model.layers.15.block_sparse_moe.experts.7.w2.weight": "model-00012-of-00024.safetensors",
|
248 |
+
"model.layers.15.block_sparse_moe.experts.7.w3.weight": "model-00012-of-00024.safetensors",
|
249 |
+
"model.layers.15.block_sparse_moe.gate.weight": "model-00012-of-00024.safetensors",
|
250 |
+
"model.layers.15.input_layernorm.weight": "model-00012-of-00024.safetensors",
|
251 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00012-of-00024.safetensors",
|
252 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00012-of-00024.safetensors",
|
253 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00012-of-00024.safetensors",
|
254 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00012-of-00024.safetensors",
|
255 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00012-of-00024.safetensors",
|
256 |
+
"model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00012-of-00024.safetensors",
|
257 |
+
"model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00012-of-00024.safetensors",
|
258 |
+
"model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00012-of-00024.safetensors",
|
259 |
+
"model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00012-of-00024.safetensors",
|
260 |
+
"model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00012-of-00024.safetensors",
|
261 |
+
"model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00013-of-00024.safetensors",
|
262 |
+
"model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00013-of-00024.safetensors",
|
263 |
+
"model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00013-of-00024.safetensors",
|
264 |
+
"model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00013-of-00024.safetensors",
|
265 |
+
"model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00013-of-00024.safetensors",
|
266 |
+
"model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00013-of-00024.safetensors",
|
267 |
+
"model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00013-of-00024.safetensors",
|
268 |
+
"model.layers.16.block_sparse_moe.experts.4.w1.weight": "model-00013-of-00024.safetensors",
|
269 |
+
"model.layers.16.block_sparse_moe.experts.4.w2.weight": "model-00013-of-00024.safetensors",
|
270 |
+
"model.layers.16.block_sparse_moe.experts.4.w3.weight": "model-00013-of-00024.safetensors",
|
271 |
+
"model.layers.16.block_sparse_moe.experts.5.w1.weight": "model-00013-of-00024.safetensors",
|
272 |
+
"model.layers.16.block_sparse_moe.experts.5.w2.weight": "model-00013-of-00024.safetensors",
|
273 |
+
"model.layers.16.block_sparse_moe.experts.5.w3.weight": "model-00013-of-00024.safetensors",
|
274 |
+
"model.layers.16.block_sparse_moe.experts.6.w1.weight": "model-00013-of-00024.safetensors",
|
275 |
+
"model.layers.16.block_sparse_moe.experts.6.w2.weight": "model-00013-of-00024.safetensors",
|
276 |
+
"model.layers.16.block_sparse_moe.experts.6.w3.weight": "model-00013-of-00024.safetensors",
|
277 |
+
"model.layers.16.block_sparse_moe.experts.7.w1.weight": "model-00013-of-00024.safetensors",
|
278 |
+
"model.layers.16.block_sparse_moe.experts.7.w2.weight": "model-00013-of-00024.safetensors",
|
279 |
+
"model.layers.16.block_sparse_moe.experts.7.w3.weight": "model-00013-of-00024.safetensors",
|
280 |
+
"model.layers.16.block_sparse_moe.gate.weight": "model-00012-of-00024.safetensors",
|
281 |
+
"model.layers.16.input_layernorm.weight": "model-00013-of-00024.safetensors",
|
282 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00013-of-00024.safetensors",
|
283 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00012-of-00024.safetensors",
|
284 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00012-of-00024.safetensors",
|
285 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00012-of-00024.safetensors",
|
286 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00012-of-00024.safetensors",
|
287 |
+
"model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00013-of-00024.safetensors",
|
288 |
+
"model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00013-of-00024.safetensors",
|
289 |
+
"model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00013-of-00024.safetensors",
|
290 |
+
"model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00013-of-00024.safetensors",
|
291 |
+
"model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00013-of-00024.safetensors",
|
292 |
+
"model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00013-of-00024.safetensors",
|
293 |
+
"model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00013-of-00024.safetensors",
|
294 |
+
"model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00013-of-00024.safetensors",
|
295 |
+
"model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00013-of-00024.safetensors",
|
296 |
+
"model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00013-of-00024.safetensors",
|
297 |
+
"model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00013-of-00024.safetensors",
|
298 |
+
"model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00013-of-00024.safetensors",
|
299 |
+
"model.layers.17.block_sparse_moe.experts.4.w1.weight": "model-00013-of-00024.safetensors",
|
300 |
+
"model.layers.17.block_sparse_moe.experts.4.w2.weight": "model-00013-of-00024.safetensors",
|
301 |
+
"model.layers.17.block_sparse_moe.experts.4.w3.weight": "model-00014-of-00024.safetensors",
|
302 |
+
"model.layers.17.block_sparse_moe.experts.5.w1.weight": "model-00014-of-00024.safetensors",
|
303 |
+
"model.layers.17.block_sparse_moe.experts.5.w2.weight": "model-00014-of-00024.safetensors",
|
304 |
+
"model.layers.17.block_sparse_moe.experts.5.w3.weight": "model-00014-of-00024.safetensors",
|
305 |
+
"model.layers.17.block_sparse_moe.experts.6.w1.weight": "model-00014-of-00024.safetensors",
|
306 |
+
"model.layers.17.block_sparse_moe.experts.6.w2.weight": "model-00014-of-00024.safetensors",
|
307 |
+
"model.layers.17.block_sparse_moe.experts.6.w3.weight": "model-00014-of-00024.safetensors",
|
308 |
+
"model.layers.17.block_sparse_moe.experts.7.w1.weight": "model-00014-of-00024.safetensors",
|
309 |
+
"model.layers.17.block_sparse_moe.experts.7.w2.weight": "model-00014-of-00024.safetensors",
|
310 |
+
"model.layers.17.block_sparse_moe.experts.7.w3.weight": "model-00014-of-00024.safetensors",
|
311 |
+
"model.layers.17.block_sparse_moe.gate.weight": "model-00013-of-00024.safetensors",
|
312 |
+
"model.layers.17.input_layernorm.weight": "model-00014-of-00024.safetensors",
|
313 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00014-of-00024.safetensors",
|
314 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00013-of-00024.safetensors",
|
315 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00013-of-00024.safetensors",
|
316 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00013-of-00024.safetensors",
|
317 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00013-of-00024.safetensors",
|
318 |
+
"model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00014-of-00024.safetensors",
|
319 |
+
"model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00014-of-00024.safetensors",
|
320 |
+
"model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00014-of-00024.safetensors",
|
321 |
+
"model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00014-of-00024.safetensors",
|
322 |
+
"model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00014-of-00024.safetensors",
|
323 |
+
"model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00014-of-00024.safetensors",
|
324 |
+
"model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00014-of-00024.safetensors",
|
325 |
+
"model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00014-of-00024.safetensors",
|
326 |
+
"model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00014-of-00024.safetensors",
|
327 |
+
"model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00014-of-00024.safetensors",
|
328 |
+
"model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00014-of-00024.safetensors",
|
329 |
+
"model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00014-of-00024.safetensors",
|
330 |
+
"model.layers.18.block_sparse_moe.experts.4.w1.weight": "model-00014-of-00024.safetensors",
|
331 |
+
"model.layers.18.block_sparse_moe.experts.4.w2.weight": "model-00014-of-00024.safetensors",
|
332 |
+
"model.layers.18.block_sparse_moe.experts.4.w3.weight": "model-00014-of-00024.safetensors",
|
333 |
+
"model.layers.18.block_sparse_moe.experts.5.w1.weight": "model-00014-of-00024.safetensors",
|
334 |
+
"model.layers.18.block_sparse_moe.experts.5.w2.weight": "model-00014-of-00024.safetensors",
|
335 |
+
"model.layers.18.block_sparse_moe.experts.5.w3.weight": "model-00014-of-00024.safetensors",
|
336 |
+
"model.layers.18.block_sparse_moe.experts.6.w1.weight": "model-00014-of-00024.safetensors",
|
337 |
+
"model.layers.18.block_sparse_moe.experts.6.w2.weight": "model-00014-of-00024.safetensors",
|
338 |
+
"model.layers.18.block_sparse_moe.experts.6.w3.weight": "model-00014-of-00024.safetensors",
|
339 |
+
"model.layers.18.block_sparse_moe.experts.7.w1.weight": "model-00014-of-00024.safetensors",
|
340 |
+
"model.layers.18.block_sparse_moe.experts.7.w2.weight": "model-00014-of-00024.safetensors",
|
341 |
+
"model.layers.18.block_sparse_moe.experts.7.w3.weight": "model-00015-of-00024.safetensors",
|
342 |
+
"model.layers.18.block_sparse_moe.gate.weight": "model-00014-of-00024.safetensors",
|
343 |
+
"model.layers.18.input_layernorm.weight": "model-00015-of-00024.safetensors",
|
344 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00015-of-00024.safetensors",
|
345 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00014-of-00024.safetensors",
|
346 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00014-of-00024.safetensors",
|
347 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00014-of-00024.safetensors",
|
348 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00014-of-00024.safetensors",
|
349 |
+
"model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00015-of-00024.safetensors",
|
350 |
+
"model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00015-of-00024.safetensors",
|
351 |
+
"model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00015-of-00024.safetensors",
|
352 |
+
"model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00015-of-00024.safetensors",
|
353 |
+
"model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00015-of-00024.safetensors",
|
354 |
+
"model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00015-of-00024.safetensors",
|
355 |
+
"model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00015-of-00024.safetensors",
|
356 |
+
"model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00015-of-00024.safetensors",
|
357 |
+
"model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00015-of-00024.safetensors",
|
358 |
+
"model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00015-of-00024.safetensors",
|
359 |
+
"model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00015-of-00024.safetensors",
|
360 |
+
"model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00015-of-00024.safetensors",
|
361 |
+
"model.layers.19.block_sparse_moe.experts.4.w1.weight": "model-00015-of-00024.safetensors",
|
362 |
+
"model.layers.19.block_sparse_moe.experts.4.w2.weight": "model-00015-of-00024.safetensors",
|
363 |
+
"model.layers.19.block_sparse_moe.experts.4.w3.weight": "model-00015-of-00024.safetensors",
|
364 |
+
"model.layers.19.block_sparse_moe.experts.5.w1.weight": "model-00015-of-00024.safetensors",
|
365 |
+
"model.layers.19.block_sparse_moe.experts.5.w2.weight": "model-00015-of-00024.safetensors",
|
366 |
+
"model.layers.19.block_sparse_moe.experts.5.w3.weight": "model-00015-of-00024.safetensors",
|
367 |
+
"model.layers.19.block_sparse_moe.experts.6.w1.weight": "model-00015-of-00024.safetensors",
|
368 |
+
"model.layers.19.block_sparse_moe.experts.6.w2.weight": "model-00015-of-00024.safetensors",
|
369 |
+
"model.layers.19.block_sparse_moe.experts.6.w3.weight": "model-00015-of-00024.safetensors",
|
370 |
+
"model.layers.19.block_sparse_moe.experts.7.w1.weight": "model-00015-of-00024.safetensors",
|
371 |
+
"model.layers.19.block_sparse_moe.experts.7.w2.weight": "model-00015-of-00024.safetensors",
|
372 |
+
"model.layers.19.block_sparse_moe.experts.7.w3.weight": "model-00015-of-00024.safetensors",
|
373 |
+
"model.layers.19.block_sparse_moe.gate.weight": "model-00015-of-00024.safetensors",
|
374 |
+
"model.layers.19.input_layernorm.weight": "model-00015-of-00024.safetensors",
|
375 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00015-of-00024.safetensors",
|
376 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00015-of-00024.safetensors",
|
377 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00015-of-00024.safetensors",
|
378 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00015-of-00024.safetensors",
|
379 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00015-of-00024.safetensors",
|
380 |
+
"model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00024.safetensors",
|
381 |
+
"model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00024.safetensors",
|
382 |
+
"model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00024.safetensors",
|
383 |
+
"model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00024.safetensors",
|
384 |
+
"model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00024.safetensors",
|
385 |
+
"model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00024.safetensors",
|
386 |
+
"model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00024.safetensors",
|
387 |
+
"model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00024.safetensors",
|
388 |
+
"model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00024.safetensors",
|
389 |
+
"model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00024.safetensors",
|
390 |
+
"model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00024.safetensors",
|
391 |
+
"model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00024.safetensors",
|
392 |
+
"model.layers.2.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00024.safetensors",
|
393 |
+
"model.layers.2.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00024.safetensors",
|
394 |
+
"model.layers.2.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00024.safetensors",
|
395 |
+
"model.layers.2.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00024.safetensors",
|
396 |
+
"model.layers.2.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00024.safetensors",
|
397 |
+
"model.layers.2.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00024.safetensors",
|
398 |
+
"model.layers.2.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00024.safetensors",
|
399 |
+
"model.layers.2.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00024.safetensors",
|
400 |
+
"model.layers.2.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00024.safetensors",
|
401 |
+
"model.layers.2.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00024.safetensors",
|
402 |
+
"model.layers.2.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00024.safetensors",
|
403 |
+
"model.layers.2.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00024.safetensors",
|
404 |
+
"model.layers.2.block_sparse_moe.gate.weight": "model-00002-of-00024.safetensors",
|
405 |
+
"model.layers.2.input_layernorm.weight": "model-00003-of-00024.safetensors",
|
406 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00003-of-00024.safetensors",
|
407 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00002-of-00024.safetensors",
|
408 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00024.safetensors",
|
409 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00002-of-00024.safetensors",
|
410 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00002-of-00024.safetensors",
|
411 |
+
"model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00015-of-00024.safetensors",
|
412 |
+
"model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00015-of-00024.safetensors",
|
413 |
+
"model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00015-of-00024.safetensors",
|
414 |
+
"model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00015-of-00024.safetensors",
|
415 |
+
"model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00015-of-00024.safetensors",
|
416 |
+
"model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00015-of-00024.safetensors",
|
417 |
+
"model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00015-of-00024.safetensors",
|
418 |
+
"model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00016-of-00024.safetensors",
|
419 |
+
"model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00016-of-00024.safetensors",
|
420 |
+
"model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00016-of-00024.safetensors",
|
421 |
+
"model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00016-of-00024.safetensors",
|
422 |
+
"model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00016-of-00024.safetensors",
|
423 |
+
"model.layers.20.block_sparse_moe.experts.4.w1.weight": "model-00016-of-00024.safetensors",
|
424 |
+
"model.layers.20.block_sparse_moe.experts.4.w2.weight": "model-00016-of-00024.safetensors",
|
425 |
+
"model.layers.20.block_sparse_moe.experts.4.w3.weight": "model-00016-of-00024.safetensors",
|
426 |
+
"model.layers.20.block_sparse_moe.experts.5.w1.weight": "model-00016-of-00024.safetensors",
|
427 |
+
"model.layers.20.block_sparse_moe.experts.5.w2.weight": "model-00016-of-00024.safetensors",
|
428 |
+
"model.layers.20.block_sparse_moe.experts.5.w3.weight": "model-00016-of-00024.safetensors",
|
429 |
+
"model.layers.20.block_sparse_moe.experts.6.w1.weight": "model-00016-of-00024.safetensors",
|
430 |
+
"model.layers.20.block_sparse_moe.experts.6.w2.weight": "model-00016-of-00024.safetensors",
|
431 |
+
"model.layers.20.block_sparse_moe.experts.6.w3.weight": "model-00016-of-00024.safetensors",
|
432 |
+
"model.layers.20.block_sparse_moe.experts.7.w1.weight": "model-00016-of-00024.safetensors",
|
433 |
+
"model.layers.20.block_sparse_moe.experts.7.w2.weight": "model-00016-of-00024.safetensors",
|
434 |
+
"model.layers.20.block_sparse_moe.experts.7.w3.weight": "model-00016-of-00024.safetensors",
|
435 |
+
"model.layers.20.block_sparse_moe.gate.weight": "model-00015-of-00024.safetensors",
|
436 |
+
"model.layers.20.input_layernorm.weight": "model-00016-of-00024.safetensors",
|
437 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00016-of-00024.safetensors",
|
438 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00015-of-00024.safetensors",
|
439 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00015-of-00024.safetensors",
|
440 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00015-of-00024.safetensors",
|
441 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00015-of-00024.safetensors",
|
442 |
+
"model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00016-of-00024.safetensors",
|
443 |
+
"model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00016-of-00024.safetensors",
|
444 |
+
"model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00016-of-00024.safetensors",
|
445 |
+
"model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00016-of-00024.safetensors",
|
446 |
+
"model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00016-of-00024.safetensors",
|
447 |
+
"model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00016-of-00024.safetensors",
|
448 |
+
"model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00016-of-00024.safetensors",
|
449 |
+
"model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00016-of-00024.safetensors",
|
450 |
+
"model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00016-of-00024.safetensors",
|
451 |
+
"model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00016-of-00024.safetensors",
|
452 |
+
"model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00016-of-00024.safetensors",
|
453 |
+
"model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00016-of-00024.safetensors",
|
454 |
+
"model.layers.21.block_sparse_moe.experts.4.w1.weight": "model-00016-of-00024.safetensors",
|
455 |
+
"model.layers.21.block_sparse_moe.experts.4.w2.weight": "model-00016-of-00024.safetensors",
|
456 |
+
"model.layers.21.block_sparse_moe.experts.4.w3.weight": "model-00016-of-00024.safetensors",
|
457 |
+
"model.layers.21.block_sparse_moe.experts.5.w1.weight": "model-00016-of-00024.safetensors",
|
458 |
+
"model.layers.21.block_sparse_moe.experts.5.w2.weight": "model-00017-of-00024.safetensors",
|
459 |
+
"model.layers.21.block_sparse_moe.experts.5.w3.weight": "model-00017-of-00024.safetensors",
|
460 |
+
"model.layers.21.block_sparse_moe.experts.6.w1.weight": "model-00017-of-00024.safetensors",
|
461 |
+
"model.layers.21.block_sparse_moe.experts.6.w2.weight": "model-00017-of-00024.safetensors",
|
462 |
+
"model.layers.21.block_sparse_moe.experts.6.w3.weight": "model-00017-of-00024.safetensors",
|
463 |
+
"model.layers.21.block_sparse_moe.experts.7.w1.weight": "model-00017-of-00024.safetensors",
|
464 |
+
"model.layers.21.block_sparse_moe.experts.7.w2.weight": "model-00017-of-00024.safetensors",
|
465 |
+
"model.layers.21.block_sparse_moe.experts.7.w3.weight": "model-00017-of-00024.safetensors",
|
466 |
+
"model.layers.21.block_sparse_moe.gate.weight": "model-00016-of-00024.safetensors",
|
467 |
+
"model.layers.21.input_layernorm.weight": "model-00017-of-00024.safetensors",
|
468 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00017-of-00024.safetensors",
|
469 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00016-of-00024.safetensors",
|
470 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00016-of-00024.safetensors",
|
471 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00016-of-00024.safetensors",
|
472 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00016-of-00024.safetensors",
|
473 |
+
"model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00017-of-00024.safetensors",
|
474 |
+
"model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00017-of-00024.safetensors",
|
475 |
+
"model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00017-of-00024.safetensors",
|
476 |
+
"model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00017-of-00024.safetensors",
|
477 |
+
"model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00017-of-00024.safetensors",
|
478 |
+
"model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00017-of-00024.safetensors",
|
479 |
+
"model.layers.22.block_sparse_moe.experts.2.w1.weight": "model-00017-of-00024.safetensors",
|
480 |
+
"model.layers.22.block_sparse_moe.experts.2.w2.weight": "model-00017-of-00024.safetensors",
|
481 |
+
"model.layers.22.block_sparse_moe.experts.2.w3.weight": "model-00017-of-00024.safetensors",
|
482 |
+
"model.layers.22.block_sparse_moe.experts.3.w1.weight": "model-00017-of-00024.safetensors",
|
483 |
+
"model.layers.22.block_sparse_moe.experts.3.w2.weight": "model-00017-of-00024.safetensors",
|
484 |
+
"model.layers.22.block_sparse_moe.experts.3.w3.weight": "model-00017-of-00024.safetensors",
|
485 |
+
"model.layers.22.block_sparse_moe.experts.4.w1.weight": "model-00017-of-00024.safetensors",
|
486 |
+
"model.layers.22.block_sparse_moe.experts.4.w2.weight": "model-00017-of-00024.safetensors",
|
487 |
+
"model.layers.22.block_sparse_moe.experts.4.w3.weight": "model-00017-of-00024.safetensors",
|
488 |
+
"model.layers.22.block_sparse_moe.experts.5.w1.weight": "model-00017-of-00024.safetensors",
|
489 |
+
"model.layers.22.block_sparse_moe.experts.5.w2.weight": "model-00017-of-00024.safetensors",
|
490 |
+
"model.layers.22.block_sparse_moe.experts.5.w3.weight": "model-00017-of-00024.safetensors",
|
491 |
+
"model.layers.22.block_sparse_moe.experts.6.w1.weight": "model-00017-of-00024.safetensors",
|
492 |
+
"model.layers.22.block_sparse_moe.experts.6.w2.weight": "model-00017-of-00024.safetensors",
|
493 |
+
"model.layers.22.block_sparse_moe.experts.6.w3.weight": "model-00017-of-00024.safetensors",
|
494 |
+
"model.layers.22.block_sparse_moe.experts.7.w1.weight": "model-00017-of-00024.safetensors",
|
495 |
+
"model.layers.22.block_sparse_moe.experts.7.w2.weight": "model-00017-of-00024.safetensors",
|
496 |
+
"model.layers.22.block_sparse_moe.experts.7.w3.weight": "model-00017-of-00024.safetensors",
|
497 |
+
"model.layers.22.block_sparse_moe.gate.weight": "model-00017-of-00024.safetensors",
|
498 |
+
"model.layers.22.input_layernorm.weight": "model-00017-of-00024.safetensors",
|
499 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00017-of-00024.safetensors",
|
500 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00017-of-00024.safetensors",
|
501 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00017-of-00024.safetensors",
|
502 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00017-of-00024.safetensors",
|
503 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00017-of-00024.safetensors",
|
504 |
+
"model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00018-of-00024.safetensors",
|
505 |
+
"model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00018-of-00024.safetensors",
|
506 |
+
"model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00018-of-00024.safetensors",
|
507 |
+
"model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00018-of-00024.safetensors",
|
508 |
+
"model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00018-of-00024.safetensors",
|
509 |
+
"model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00018-of-00024.safetensors",
|
510 |
+
"model.layers.23.block_sparse_moe.experts.2.w1.weight": "model-00018-of-00024.safetensors",
|
511 |
+
"model.layers.23.block_sparse_moe.experts.2.w2.weight": "model-00018-of-00024.safetensors",
|
512 |
+
"model.layers.23.block_sparse_moe.experts.2.w3.weight": "model-00018-of-00024.safetensors",
|
513 |
+
"model.layers.23.block_sparse_moe.experts.3.w1.weight": "model-00018-of-00024.safetensors",
|
514 |
+
"model.layers.23.block_sparse_moe.experts.3.w2.weight": "model-00018-of-00024.safetensors",
|
515 |
+
"model.layers.23.block_sparse_moe.experts.3.w3.weight": "model-00018-of-00024.safetensors",
|
516 |
+
"model.layers.23.block_sparse_moe.experts.4.w1.weight": "model-00018-of-00024.safetensors",
|
517 |
+
"model.layers.23.block_sparse_moe.experts.4.w2.weight": "model-00018-of-00024.safetensors",
|
518 |
+
"model.layers.23.block_sparse_moe.experts.4.w3.weight": "model-00018-of-00024.safetensors",
|
519 |
+
"model.layers.23.block_sparse_moe.experts.5.w1.weight": "model-00018-of-00024.safetensors",
|
520 |
+
"model.layers.23.block_sparse_moe.experts.5.w2.weight": "model-00018-of-00024.safetensors",
|
521 |
+
"model.layers.23.block_sparse_moe.experts.5.w3.weight": "model-00018-of-00024.safetensors",
|
522 |
+
"model.layers.23.block_sparse_moe.experts.6.w1.weight": "model-00018-of-00024.safetensors",
|
523 |
+
"model.layers.23.block_sparse_moe.experts.6.w2.weight": "model-00018-of-00024.safetensors",
|
524 |
+
"model.layers.23.block_sparse_moe.experts.6.w3.weight": "model-00018-of-00024.safetensors",
|
525 |
+
"model.layers.23.block_sparse_moe.experts.7.w1.weight": "model-00018-of-00024.safetensors",
|
526 |
+
"model.layers.23.block_sparse_moe.experts.7.w2.weight": "model-00018-of-00024.safetensors",
|
527 |
+
"model.layers.23.block_sparse_moe.experts.7.w3.weight": "model-00018-of-00024.safetensors",
|
528 |
+
"model.layers.23.block_sparse_moe.gate.weight": "model-00017-of-00024.safetensors",
|
529 |
+
"model.layers.23.input_layernorm.weight": "model-00018-of-00024.safetensors",
|
530 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00018-of-00024.safetensors",
|
531 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00017-of-00024.safetensors",
|
532 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00017-of-00024.safetensors",
|
533 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00017-of-00024.safetensors",
|
534 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00017-of-00024.safetensors",
|
535 |
+
"model.layers.24.block_sparse_moe.experts.0.w1.weight": "model-00018-of-00024.safetensors",
|
536 |
+
"model.layers.24.block_sparse_moe.experts.0.w2.weight": "model-00018-of-00024.safetensors",
|
537 |
+
"model.layers.24.block_sparse_moe.experts.0.w3.weight": "model-00018-of-00024.safetensors",
|
538 |
+
"model.layers.24.block_sparse_moe.experts.1.w1.weight": "model-00018-of-00024.safetensors",
|
539 |
+
"model.layers.24.block_sparse_moe.experts.1.w2.weight": "model-00018-of-00024.safetensors",
|
540 |
+
"model.layers.24.block_sparse_moe.experts.1.w3.weight": "model-00018-of-00024.safetensors",
|
541 |
+
"model.layers.24.block_sparse_moe.experts.2.w1.weight": "model-00018-of-00024.safetensors",
|
542 |
+
"model.layers.24.block_sparse_moe.experts.2.w2.weight": "model-00018-of-00024.safetensors",
|
543 |
+
"model.layers.24.block_sparse_moe.experts.2.w3.weight": "model-00018-of-00024.safetensors",
|
544 |
+
"model.layers.24.block_sparse_moe.experts.3.w1.weight": "model-00019-of-00024.safetensors",
|
545 |
+
"model.layers.24.block_sparse_moe.experts.3.w2.weight": "model-00019-of-00024.safetensors",
|
546 |
+
"model.layers.24.block_sparse_moe.experts.3.w3.weight": "model-00019-of-00024.safetensors",
|
547 |
+
"model.layers.24.block_sparse_moe.experts.4.w1.weight": "model-00019-of-00024.safetensors",
|
548 |
+
"model.layers.24.block_sparse_moe.experts.4.w2.weight": "model-00019-of-00024.safetensors",
|
549 |
+
"model.layers.24.block_sparse_moe.experts.4.w3.weight": "model-00019-of-00024.safetensors",
|
550 |
+
"model.layers.24.block_sparse_moe.experts.5.w1.weight": "model-00019-of-00024.safetensors",
|
551 |
+
"model.layers.24.block_sparse_moe.experts.5.w2.weight": "model-00019-of-00024.safetensors",
|
552 |
+
"model.layers.24.block_sparse_moe.experts.5.w3.weight": "model-00019-of-00024.safetensors",
|
553 |
+
"model.layers.24.block_sparse_moe.experts.6.w1.weight": "model-00019-of-00024.safetensors",
|
554 |
+
"model.layers.24.block_sparse_moe.experts.6.w2.weight": "model-00019-of-00024.safetensors",
|
555 |
+
"model.layers.24.block_sparse_moe.experts.6.w3.weight": "model-00019-of-00024.safetensors",
|
556 |
+
"model.layers.24.block_sparse_moe.experts.7.w1.weight": "model-00019-of-00024.safetensors",
|
557 |
+
"model.layers.24.block_sparse_moe.experts.7.w2.weight": "model-00019-of-00024.safetensors",
|
558 |
+
"model.layers.24.block_sparse_moe.experts.7.w3.weight": "model-00019-of-00024.safetensors",
|
559 |
+
"model.layers.24.block_sparse_moe.gate.weight": "model-00018-of-00024.safetensors",
|
560 |
+
"model.layers.24.input_layernorm.weight": "model-00019-of-00024.safetensors",
|
561 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00019-of-00024.safetensors",
|
562 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00018-of-00024.safetensors",
|
563 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00018-of-00024.safetensors",
|
564 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00018-of-00024.safetensors",
|
565 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00018-of-00024.safetensors",
|
566 |
+
"model.layers.25.block_sparse_moe.experts.0.w1.weight": "model-00019-of-00024.safetensors",
|
567 |
+
"model.layers.25.block_sparse_moe.experts.0.w2.weight": "model-00019-of-00024.safetensors",
|
568 |
+
"model.layers.25.block_sparse_moe.experts.0.w3.weight": "model-00019-of-00024.safetensors",
|
569 |
+
"model.layers.25.block_sparse_moe.experts.1.w1.weight": "model-00019-of-00024.safetensors",
|
570 |
+
"model.layers.25.block_sparse_moe.experts.1.w2.weight": "model-00019-of-00024.safetensors",
|
571 |
+
"model.layers.25.block_sparse_moe.experts.1.w3.weight": "model-00019-of-00024.safetensors",
|
572 |
+
"model.layers.25.block_sparse_moe.experts.2.w1.weight": "model-00019-of-00024.safetensors",
|
573 |
+
"model.layers.25.block_sparse_moe.experts.2.w2.weight": "model-00019-of-00024.safetensors",
|
574 |
+
"model.layers.25.block_sparse_moe.experts.2.w3.weight": "model-00019-of-00024.safetensors",
|
575 |
+
"model.layers.25.block_sparse_moe.experts.3.w1.weight": "model-00019-of-00024.safetensors",
|
576 |
+
"model.layers.25.block_sparse_moe.experts.3.w2.weight": "model-00019-of-00024.safetensors",
|
577 |
+
"model.layers.25.block_sparse_moe.experts.3.w3.weight": "model-00019-of-00024.safetensors",
|
578 |
+
"model.layers.25.block_sparse_moe.experts.4.w1.weight": "model-00019-of-00024.safetensors",
|
579 |
+
"model.layers.25.block_sparse_moe.experts.4.w2.weight": "model-00019-of-00024.safetensors",
|
580 |
+
"model.layers.25.block_sparse_moe.experts.4.w3.weight": "model-00019-of-00024.safetensors",
|
581 |
+
"model.layers.25.block_sparse_moe.experts.5.w1.weight": "model-00019-of-00024.safetensors",
|
582 |
+
"model.layers.25.block_sparse_moe.experts.5.w2.weight": "model-00019-of-00024.safetensors",
|
583 |
+
"model.layers.25.block_sparse_moe.experts.5.w3.weight": "model-00019-of-00024.safetensors",
|
584 |
+
"model.layers.25.block_sparse_moe.experts.6.w1.weight": "model-00020-of-00024.safetensors",
|
585 |
+
"model.layers.25.block_sparse_moe.experts.6.w2.weight": "model-00020-of-00024.safetensors",
|
586 |
+
"model.layers.25.block_sparse_moe.experts.6.w3.weight": "model-00020-of-00024.safetensors",
|
587 |
+
"model.layers.25.block_sparse_moe.experts.7.w1.weight": "model-00020-of-00024.safetensors",
|
588 |
+
"model.layers.25.block_sparse_moe.experts.7.w2.weight": "model-00020-of-00024.safetensors",
|
589 |
+
"model.layers.25.block_sparse_moe.experts.7.w3.weight": "model-00020-of-00024.safetensors",
|
590 |
+
"model.layers.25.block_sparse_moe.gate.weight": "model-00019-of-00024.safetensors",
|
591 |
+
"model.layers.25.input_layernorm.weight": "model-00020-of-00024.safetensors",
|
592 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00020-of-00024.safetensors",
|
593 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00019-of-00024.safetensors",
|
594 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00019-of-00024.safetensors",
|
595 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00019-of-00024.safetensors",
|
596 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00019-of-00024.safetensors",
|
597 |
+
"model.layers.26.block_sparse_moe.experts.0.w1.weight": "model-00020-of-00024.safetensors",
|
598 |
+
"model.layers.26.block_sparse_moe.experts.0.w2.weight": "model-00020-of-00024.safetensors",
|
599 |
+
"model.layers.26.block_sparse_moe.experts.0.w3.weight": "model-00020-of-00024.safetensors",
|
600 |
+
"model.layers.26.block_sparse_moe.experts.1.w1.weight": "model-00020-of-00024.safetensors",
|
601 |
+
"model.layers.26.block_sparse_moe.experts.1.w2.weight": "model-00020-of-00024.safetensors",
|
602 |
+
"model.layers.26.block_sparse_moe.experts.1.w3.weight": "model-00020-of-00024.safetensors",
|
603 |
+
"model.layers.26.block_sparse_moe.experts.2.w1.weight": "model-00020-of-00024.safetensors",
|
604 |
+
"model.layers.26.block_sparse_moe.experts.2.w2.weight": "model-00020-of-00024.safetensors",
|
605 |
+
"model.layers.26.block_sparse_moe.experts.2.w3.weight": "model-00020-of-00024.safetensors",
|
606 |
+
"model.layers.26.block_sparse_moe.experts.3.w1.weight": "model-00020-of-00024.safetensors",
|
607 |
+
"model.layers.26.block_sparse_moe.experts.3.w2.weight": "model-00020-of-00024.safetensors",
|
608 |
+
"model.layers.26.block_sparse_moe.experts.3.w3.weight": "model-00020-of-00024.safetensors",
|
609 |
+
"model.layers.26.block_sparse_moe.experts.4.w1.weight": "model-00020-of-00024.safetensors",
|
610 |
+
"model.layers.26.block_sparse_moe.experts.4.w2.weight": "model-00020-of-00024.safetensors",
|
611 |
+
"model.layers.26.block_sparse_moe.experts.4.w3.weight": "model-00020-of-00024.safetensors",
|
612 |
+
"model.layers.26.block_sparse_moe.experts.5.w1.weight": "model-00020-of-00024.safetensors",
|
613 |
+
"model.layers.26.block_sparse_moe.experts.5.w2.weight": "model-00020-of-00024.safetensors",
|
614 |
+
"model.layers.26.block_sparse_moe.experts.5.w3.weight": "model-00020-of-00024.safetensors",
|
615 |
+
"model.layers.26.block_sparse_moe.experts.6.w1.weight": "model-00020-of-00024.safetensors",
|
616 |
+
"model.layers.26.block_sparse_moe.experts.6.w2.weight": "model-00020-of-00024.safetensors",
|
617 |
+
"model.layers.26.block_sparse_moe.experts.6.w3.weight": "model-00020-of-00024.safetensors",
|
618 |
+
"model.layers.26.block_sparse_moe.experts.7.w1.weight": "model-00020-of-00024.safetensors",
|
619 |
+
"model.layers.26.block_sparse_moe.experts.7.w2.weight": "model-00020-of-00024.safetensors",
|
620 |
+
"model.layers.26.block_sparse_moe.experts.7.w3.weight": "model-00020-of-00024.safetensors",
|
621 |
+
"model.layers.26.block_sparse_moe.gate.weight": "model-00020-of-00024.safetensors",
|
622 |
+
"model.layers.26.input_layernorm.weight": "model-00020-of-00024.safetensors",
|
623 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00020-of-00024.safetensors",
|
624 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00020-of-00024.safetensors",
|
625 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00020-of-00024.safetensors",
|
626 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00020-of-00024.safetensors",
|
627 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00020-of-00024.safetensors",
|
628 |
+
"model.layers.27.block_sparse_moe.experts.0.w1.weight": "model-00020-of-00024.safetensors",
|
629 |
+
"model.layers.27.block_sparse_moe.experts.0.w2.weight": "model-00020-of-00024.safetensors",
|
630 |
+
"model.layers.27.block_sparse_moe.experts.0.w3.weight": "model-00021-of-00024.safetensors",
|
631 |
+
"model.layers.27.block_sparse_moe.experts.1.w1.weight": "model-00021-of-00024.safetensors",
|
632 |
+
"model.layers.27.block_sparse_moe.experts.1.w2.weight": "model-00021-of-00024.safetensors",
|
633 |
+
"model.layers.27.block_sparse_moe.experts.1.w3.weight": "model-00021-of-00024.safetensors",
|
634 |
+
"model.layers.27.block_sparse_moe.experts.2.w1.weight": "model-00021-of-00024.safetensors",
|
635 |
+
"model.layers.27.block_sparse_moe.experts.2.w2.weight": "model-00021-of-00024.safetensors",
|
636 |
+
"model.layers.27.block_sparse_moe.experts.2.w3.weight": "model-00021-of-00024.safetensors",
|
637 |
+
"model.layers.27.block_sparse_moe.experts.3.w1.weight": "model-00021-of-00024.safetensors",
|
638 |
+
"model.layers.27.block_sparse_moe.experts.3.w2.weight": "model-00021-of-00024.safetensors",
|
639 |
+
"model.layers.27.block_sparse_moe.experts.3.w3.weight": "model-00021-of-00024.safetensors",
|
640 |
+
"model.layers.27.block_sparse_moe.experts.4.w1.weight": "model-00021-of-00024.safetensors",
|
641 |
+
"model.layers.27.block_sparse_moe.experts.4.w2.weight": "model-00021-of-00024.safetensors",
|
642 |
+
"model.layers.27.block_sparse_moe.experts.4.w3.weight": "model-00021-of-00024.safetensors",
|
643 |
+
"model.layers.27.block_sparse_moe.experts.5.w1.weight": "model-00021-of-00024.safetensors",
|
644 |
+
"model.layers.27.block_sparse_moe.experts.5.w2.weight": "model-00021-of-00024.safetensors",
|
645 |
+
"model.layers.27.block_sparse_moe.experts.5.w3.weight": "model-00021-of-00024.safetensors",
|
646 |
+
"model.layers.27.block_sparse_moe.experts.6.w1.weight": "model-00021-of-00024.safetensors",
|
647 |
+
"model.layers.27.block_sparse_moe.experts.6.w2.weight": "model-00021-of-00024.safetensors",
|
648 |
+
"model.layers.27.block_sparse_moe.experts.6.w3.weight": "model-00021-of-00024.safetensors",
|
649 |
+
"model.layers.27.block_sparse_moe.experts.7.w1.weight": "model-00021-of-00024.safetensors",
|
650 |
+
"model.layers.27.block_sparse_moe.experts.7.w2.weight": "model-00021-of-00024.safetensors",
|
651 |
+
"model.layers.27.block_sparse_moe.experts.7.w3.weight": "model-00021-of-00024.safetensors",
|
652 |
+
"model.layers.27.block_sparse_moe.gate.weight": "model-00020-of-00024.safetensors",
|
653 |
+
"model.layers.27.input_layernorm.weight": "model-00021-of-00024.safetensors",
|
654 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00021-of-00024.safetensors",
|
655 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00020-of-00024.safetensors",
|
656 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00020-of-00024.safetensors",
|
657 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00020-of-00024.safetensors",
|
658 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00020-of-00024.safetensors",
|
659 |
+
"model.layers.28.block_sparse_moe.experts.0.w1.weight": "model-00021-of-00024.safetensors",
|
660 |
+
"model.layers.28.block_sparse_moe.experts.0.w2.weight": "model-00021-of-00024.safetensors",
|
661 |
+
"model.layers.28.block_sparse_moe.experts.0.w3.weight": "model-00021-of-00024.safetensors",
|
662 |
+
"model.layers.28.block_sparse_moe.experts.1.w1.weight": "model-00021-of-00024.safetensors",
|
663 |
+
"model.layers.28.block_sparse_moe.experts.1.w2.weight": "model-00021-of-00024.safetensors",
|
664 |
+
"model.layers.28.block_sparse_moe.experts.1.w3.weight": "model-00021-of-00024.safetensors",
|
665 |
+
"model.layers.28.block_sparse_moe.experts.2.w1.weight": "model-00021-of-00024.safetensors",
|
666 |
+
"model.layers.28.block_sparse_moe.experts.2.w2.weight": "model-00021-of-00024.safetensors",
|
667 |
+
"model.layers.28.block_sparse_moe.experts.2.w3.weight": "model-00021-of-00024.safetensors",
|
668 |
+
"model.layers.28.block_sparse_moe.experts.3.w1.weight": "model-00021-of-00024.safetensors",
|
669 |
+
"model.layers.28.block_sparse_moe.experts.3.w2.weight": "model-00021-of-00024.safetensors",
|
670 |
+
"model.layers.28.block_sparse_moe.experts.3.w3.weight": "model-00022-of-00024.safetensors",
|
671 |
+
"model.layers.28.block_sparse_moe.experts.4.w1.weight": "model-00022-of-00024.safetensors",
|
672 |
+
"model.layers.28.block_sparse_moe.experts.4.w2.weight": "model-00022-of-00024.safetensors",
|
673 |
+
"model.layers.28.block_sparse_moe.experts.4.w3.weight": "model-00022-of-00024.safetensors",
|
674 |
+
"model.layers.28.block_sparse_moe.experts.5.w1.weight": "model-00022-of-00024.safetensors",
|
675 |
+
"model.layers.28.block_sparse_moe.experts.5.w2.weight": "model-00022-of-00024.safetensors",
|
676 |
+
"model.layers.28.block_sparse_moe.experts.5.w3.weight": "model-00022-of-00024.safetensors",
|
677 |
+
"model.layers.28.block_sparse_moe.experts.6.w1.weight": "model-00022-of-00024.safetensors",
|
678 |
+
"model.layers.28.block_sparse_moe.experts.6.w2.weight": "model-00022-of-00024.safetensors",
|
679 |
+
"model.layers.28.block_sparse_moe.experts.6.w3.weight": "model-00022-of-00024.safetensors",
|
680 |
+
"model.layers.28.block_sparse_moe.experts.7.w1.weight": "model-00022-of-00024.safetensors",
|
681 |
+
"model.layers.28.block_sparse_moe.experts.7.w2.weight": "model-00022-of-00024.safetensors",
|
682 |
+
"model.layers.28.block_sparse_moe.experts.7.w3.weight": "model-00022-of-00024.safetensors",
|
683 |
+
"model.layers.28.block_sparse_moe.gate.weight": "model-00021-of-00024.safetensors",
|
684 |
+
"model.layers.28.input_layernorm.weight": "model-00022-of-00024.safetensors",
|
685 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00022-of-00024.safetensors",
|
686 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00021-of-00024.safetensors",
|
687 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00021-of-00024.safetensors",
|
688 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00021-of-00024.safetensors",
|
689 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00021-of-00024.safetensors",
|
690 |
+
"model.layers.29.block_sparse_moe.experts.0.w1.weight": "model-00022-of-00024.safetensors",
|
691 |
+
"model.layers.29.block_sparse_moe.experts.0.w2.weight": "model-00022-of-00024.safetensors",
|
692 |
+
"model.layers.29.block_sparse_moe.experts.0.w3.weight": "model-00022-of-00024.safetensors",
|
693 |
+
"model.layers.29.block_sparse_moe.experts.1.w1.weight": "model-00022-of-00024.safetensors",
|
694 |
+
"model.layers.29.block_sparse_moe.experts.1.w2.weight": "model-00022-of-00024.safetensors",
|
695 |
+
"model.layers.29.block_sparse_moe.experts.1.w3.weight": "model-00022-of-00024.safetensors",
|
696 |
+
"model.layers.29.block_sparse_moe.experts.2.w1.weight": "model-00022-of-00024.safetensors",
|
697 |
+
"model.layers.29.block_sparse_moe.experts.2.w2.weight": "model-00022-of-00024.safetensors",
|
698 |
+
"model.layers.29.block_sparse_moe.experts.2.w3.weight": "model-00022-of-00024.safetensors",
|
699 |
+
"model.layers.29.block_sparse_moe.experts.3.w1.weight": "model-00022-of-00024.safetensors",
|
700 |
+
"model.layers.29.block_sparse_moe.experts.3.w2.weight": "model-00022-of-00024.safetensors",
|
701 |
+
"model.layers.29.block_sparse_moe.experts.3.w3.weight": "model-00022-of-00024.safetensors",
|
702 |
+
"model.layers.29.block_sparse_moe.experts.4.w1.weight": "model-00022-of-00024.safetensors",
|
703 |
+
"model.layers.29.block_sparse_moe.experts.4.w2.weight": "model-00022-of-00024.safetensors",
|
704 |
+
"model.layers.29.block_sparse_moe.experts.4.w3.weight": "model-00022-of-00024.safetensors",
|
705 |
+
"model.layers.29.block_sparse_moe.experts.5.w1.weight": "model-00022-of-00024.safetensors",
|
706 |
+
"model.layers.29.block_sparse_moe.experts.5.w2.weight": "model-00022-of-00024.safetensors",
|
707 |
+
"model.layers.29.block_sparse_moe.experts.5.w3.weight": "model-00022-of-00024.safetensors",
|
708 |
+
"model.layers.29.block_sparse_moe.experts.6.w1.weight": "model-00022-of-00024.safetensors",
|
709 |
+
"model.layers.29.block_sparse_moe.experts.6.w2.weight": "model-00022-of-00024.safetensors",
|
710 |
+
"model.layers.29.block_sparse_moe.experts.6.w3.weight": "model-00023-of-00024.safetensors",
|
711 |
+
"model.layers.29.block_sparse_moe.experts.7.w1.weight": "model-00023-of-00024.safetensors",
|
712 |
+
"model.layers.29.block_sparse_moe.experts.7.w2.weight": "model-00023-of-00024.safetensors",
|
713 |
+
"model.layers.29.block_sparse_moe.experts.7.w3.weight": "model-00023-of-00024.safetensors",
|
714 |
+
"model.layers.29.block_sparse_moe.gate.weight": "model-00022-of-00024.safetensors",
|
715 |
+
"model.layers.29.input_layernorm.weight": "model-00023-of-00024.safetensors",
|
716 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00023-of-00024.safetensors",
|
717 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00022-of-00024.safetensors",
|
718 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00022-of-00024.safetensors",
|
719 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00022-of-00024.safetensors",
|
720 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00022-of-00024.safetensors",
|
721 |
+
"model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00024.safetensors",
|
722 |
+
"model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00024.safetensors",
|
723 |
+
"model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00024.safetensors",
|
724 |
+
"model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00024.safetensors",
|
725 |
+
"model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00024.safetensors",
|
726 |
+
"model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00024.safetensors",
|
727 |
+
"model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00024.safetensors",
|
728 |
+
"model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00024.safetensors",
|
729 |
+
"model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00024.safetensors",
|
730 |
+
"model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00024.safetensors",
|
731 |
+
"model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00024.safetensors",
|
732 |
+
"model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00024.safetensors",
|
733 |
+
"model.layers.3.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00024.safetensors",
|
734 |
+
"model.layers.3.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00024.safetensors",
|
735 |
+
"model.layers.3.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00024.safetensors",
|
736 |
+
"model.layers.3.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00024.safetensors",
|
737 |
+
"model.layers.3.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00024.safetensors",
|
738 |
+
"model.layers.3.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00024.safetensors",
|
739 |
+
"model.layers.3.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00024.safetensors",
|
740 |
+
"model.layers.3.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00024.safetensors",
|
741 |
+
"model.layers.3.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00024.safetensors",
|
742 |
+
"model.layers.3.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00024.safetensors",
|
743 |
+
"model.layers.3.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00024.safetensors",
|
744 |
+
"model.layers.3.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00024.safetensors",
|
745 |
+
"model.layers.3.block_sparse_moe.gate.weight": "model-00003-of-00024.safetensors",
|
746 |
+
"model.layers.3.input_layernorm.weight": "model-00003-of-00024.safetensors",
|
747 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00003-of-00024.safetensors",
|
748 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00003-of-00024.safetensors",
|
749 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00003-of-00024.safetensors",
|
750 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00003-of-00024.safetensors",
|
751 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00003-of-00024.safetensors",
|
752 |
+
"model.layers.30.block_sparse_moe.experts.0.w1.weight": "model-00023-of-00024.safetensors",
|
753 |
+
"model.layers.30.block_sparse_moe.experts.0.w2.weight": "model-00023-of-00024.safetensors",
|
754 |
+
"model.layers.30.block_sparse_moe.experts.0.w3.weight": "model-00023-of-00024.safetensors",
|
755 |
+
"model.layers.30.block_sparse_moe.experts.1.w1.weight": "model-00023-of-00024.safetensors",
|
756 |
+
"model.layers.30.block_sparse_moe.experts.1.w2.weight": "model-00023-of-00024.safetensors",
|
757 |
+
"model.layers.30.block_sparse_moe.experts.1.w3.weight": "model-00023-of-00024.safetensors",
|
758 |
+
"model.layers.30.block_sparse_moe.experts.2.w1.weight": "model-00023-of-00024.safetensors",
|
759 |
+
"model.layers.30.block_sparse_moe.experts.2.w2.weight": "model-00023-of-00024.safetensors",
|
760 |
+
"model.layers.30.block_sparse_moe.experts.2.w3.weight": "model-00023-of-00024.safetensors",
|
761 |
+
"model.layers.30.block_sparse_moe.experts.3.w1.weight": "model-00023-of-00024.safetensors",
|
762 |
+
"model.layers.30.block_sparse_moe.experts.3.w2.weight": "model-00023-of-00024.safetensors",
|
763 |
+
"model.layers.30.block_sparse_moe.experts.3.w3.weight": "model-00023-of-00024.safetensors",
|
764 |
+
"model.layers.30.block_sparse_moe.experts.4.w1.weight": "model-00023-of-00024.safetensors",
|
765 |
+
"model.layers.30.block_sparse_moe.experts.4.w2.weight": "model-00023-of-00024.safetensors",
|
766 |
+
"model.layers.30.block_sparse_moe.experts.4.w3.weight": "model-00023-of-00024.safetensors",
|
767 |
+
"model.layers.30.block_sparse_moe.experts.5.w1.weight": "model-00023-of-00024.safetensors",
|
768 |
+
"model.layers.30.block_sparse_moe.experts.5.w2.weight": "model-00023-of-00024.safetensors",
|
769 |
+
"model.layers.30.block_sparse_moe.experts.5.w3.weight": "model-00023-of-00024.safetensors",
|
770 |
+
"model.layers.30.block_sparse_moe.experts.6.w1.weight": "model-00023-of-00024.safetensors",
|
771 |
+
"model.layers.30.block_sparse_moe.experts.6.w2.weight": "model-00023-of-00024.safetensors",
|
772 |
+
"model.layers.30.block_sparse_moe.experts.6.w3.weight": "model-00023-of-00024.safetensors",
|
773 |
+
"model.layers.30.block_sparse_moe.experts.7.w1.weight": "model-00023-of-00024.safetensors",
|
774 |
+
"model.layers.30.block_sparse_moe.experts.7.w2.weight": "model-00023-of-00024.safetensors",
|
775 |
+
"model.layers.30.block_sparse_moe.experts.7.w3.weight": "model-00023-of-00024.safetensors",
|
776 |
+
"model.layers.30.block_sparse_moe.gate.weight": "model-00023-of-00024.safetensors",
|
777 |
+
"model.layers.30.input_layernorm.weight": "model-00023-of-00024.safetensors",
|
778 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00023-of-00024.safetensors",
|
779 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00023-of-00024.safetensors",
|
780 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00023-of-00024.safetensors",
|
781 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00023-of-00024.safetensors",
|
782 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00023-of-00024.safetensors",
|
783 |
+
"model.layers.31.block_sparse_moe.experts.0.w1.weight": "model-00023-of-00024.safetensors",
|
784 |
+
"model.layers.31.block_sparse_moe.experts.0.w2.weight": "model-00023-of-00024.safetensors",
|
785 |
+
"model.layers.31.block_sparse_moe.experts.0.w3.weight": "model-00023-of-00024.safetensors",
|
786 |
+
"model.layers.31.block_sparse_moe.experts.1.w1.weight": "model-00023-of-00024.safetensors",
|
787 |
+
"model.layers.31.block_sparse_moe.experts.1.w2.weight": "model-00024-of-00024.safetensors",
|
788 |
+
"model.layers.31.block_sparse_moe.experts.1.w3.weight": "model-00024-of-00024.safetensors",
|
789 |
+
"model.layers.31.block_sparse_moe.experts.2.w1.weight": "model-00024-of-00024.safetensors",
|
790 |
+
"model.layers.31.block_sparse_moe.experts.2.w2.weight": "model-00024-of-00024.safetensors",
|
791 |
+
"model.layers.31.block_sparse_moe.experts.2.w3.weight": "model-00024-of-00024.safetensors",
|
792 |
+
"model.layers.31.block_sparse_moe.experts.3.w1.weight": "model-00024-of-00024.safetensors",
|
793 |
+
"model.layers.31.block_sparse_moe.experts.3.w2.weight": "model-00024-of-00024.safetensors",
|
794 |
+
"model.layers.31.block_sparse_moe.experts.3.w3.weight": "model-00024-of-00024.safetensors",
|
795 |
+
"model.layers.31.block_sparse_moe.experts.4.w1.weight": "model-00024-of-00024.safetensors",
|
796 |
+
"model.layers.31.block_sparse_moe.experts.4.w2.weight": "model-00024-of-00024.safetensors",
|
797 |
+
"model.layers.31.block_sparse_moe.experts.4.w3.weight": "model-00024-of-00024.safetensors",
|
798 |
+
"model.layers.31.block_sparse_moe.experts.5.w1.weight": "model-00024-of-00024.safetensors",
|
799 |
+
"model.layers.31.block_sparse_moe.experts.5.w2.weight": "model-00024-of-00024.safetensors",
|
800 |
+
"model.layers.31.block_sparse_moe.experts.5.w3.weight": "model-00024-of-00024.safetensors",
|
801 |
+
"model.layers.31.block_sparse_moe.experts.6.w1.weight": "model-00024-of-00024.safetensors",
|
802 |
+
"model.layers.31.block_sparse_moe.experts.6.w2.weight": "model-00024-of-00024.safetensors",
|
803 |
+
"model.layers.31.block_sparse_moe.experts.6.w3.weight": "model-00024-of-00024.safetensors",
|
804 |
+
"model.layers.31.block_sparse_moe.experts.7.w1.weight": "model-00024-of-00024.safetensors",
|
805 |
+
"model.layers.31.block_sparse_moe.experts.7.w2.weight": "model-00024-of-00024.safetensors",
|
806 |
+
"model.layers.31.block_sparse_moe.experts.7.w3.weight": "model-00024-of-00024.safetensors",
|
807 |
+
"model.layers.31.block_sparse_moe.gate.weight": "model-00023-of-00024.safetensors",
|
808 |
+
"model.layers.31.input_layernorm.weight": "model-00024-of-00024.safetensors",
|
809 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00024-of-00024.safetensors",
|
810 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00023-of-00024.safetensors",
|
811 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00023-of-00024.safetensors",
|
812 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00023-of-00024.safetensors",
|
813 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00023-of-00024.safetensors",
|
814 |
+
"model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00024.safetensors",
|
815 |
+
"model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00024.safetensors",
|
816 |
+
"model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00024.safetensors",
|
817 |
+
"model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00024.safetensors",
|
818 |
+
"model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00024.safetensors",
|
819 |
+
"model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00024.safetensors",
|
820 |
+
"model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00024.safetensors",
|
821 |
+
"model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00024.safetensors",
|
822 |
+
"model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00024.safetensors",
|
823 |
+
"model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00024.safetensors",
|
824 |
+
"model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00024.safetensors",
|
825 |
+
"model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00024.safetensors",
|
826 |
+
"model.layers.4.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00024.safetensors",
|
827 |
+
"model.layers.4.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00024.safetensors",
|
828 |
+
"model.layers.4.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00024.safetensors",
|
829 |
+
"model.layers.4.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00024.safetensors",
|
830 |
+
"model.layers.4.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00024.safetensors",
|
831 |
+
"model.layers.4.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00024.safetensors",
|
832 |
+
"model.layers.4.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00024.safetensors",
|
833 |
+
"model.layers.4.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00024.safetensors",
|
834 |
+
"model.layers.4.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00024.safetensors",
|
835 |
+
"model.layers.4.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00024.safetensors",
|
836 |
+
"model.layers.4.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00024.safetensors",
|
837 |
+
"model.layers.4.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00024.safetensors",
|
838 |
+
"model.layers.4.block_sparse_moe.gate.weight": "model-00004-of-00024.safetensors",
|
839 |
+
"model.layers.4.input_layernorm.weight": "model-00004-of-00024.safetensors",
|
840 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00004-of-00024.safetensors",
|
841 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00004-of-00024.safetensors",
|
842 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00004-of-00024.safetensors",
|
843 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00003-of-00024.safetensors",
|
844 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00004-of-00024.safetensors",
|
845 |
+
"model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00024.safetensors",
|
846 |
+
"model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00024.safetensors",
|
847 |
+
"model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00024.safetensors",
|
848 |
+
"model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00024.safetensors",
|
849 |
+
"model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00024.safetensors",
|
850 |
+
"model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00024.safetensors",
|
851 |
+
"model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00024.safetensors",
|
852 |
+
"model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00024.safetensors",
|
853 |
+
"model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00024.safetensors",
|
854 |
+
"model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00024.safetensors",
|
855 |
+
"model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00024.safetensors",
|
856 |
+
"model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00024.safetensors",
|
857 |
+
"model.layers.5.block_sparse_moe.experts.4.w1.weight": "model-00005-of-00024.safetensors",
|
858 |
+
"model.layers.5.block_sparse_moe.experts.4.w2.weight": "model-00005-of-00024.safetensors",
|
859 |
+
"model.layers.5.block_sparse_moe.experts.4.w3.weight": "model-00005-of-00024.safetensors",
|
860 |
+
"model.layers.5.block_sparse_moe.experts.5.w1.weight": "model-00005-of-00024.safetensors",
|
861 |
+
"model.layers.5.block_sparse_moe.experts.5.w2.weight": "model-00005-of-00024.safetensors",
|
862 |
+
"model.layers.5.block_sparse_moe.experts.5.w3.weight": "model-00005-of-00024.safetensors",
|
863 |
+
"model.layers.5.block_sparse_moe.experts.6.w1.weight": "model-00005-of-00024.safetensors",
|
864 |
+
"model.layers.5.block_sparse_moe.experts.6.w2.weight": "model-00005-of-00024.safetensors",
|
865 |
+
"model.layers.5.block_sparse_moe.experts.6.w3.weight": "model-00005-of-00024.safetensors",
|
866 |
+
"model.layers.5.block_sparse_moe.experts.7.w1.weight": "model-00005-of-00024.safetensors",
|
867 |
+
"model.layers.5.block_sparse_moe.experts.7.w2.weight": "model-00005-of-00024.safetensors",
|
868 |
+
"model.layers.5.block_sparse_moe.experts.7.w3.weight": "model-00005-of-00024.safetensors",
|
869 |
+
"model.layers.5.block_sparse_moe.gate.weight": "model-00004-of-00024.safetensors",
|
870 |
+
"model.layers.5.input_layernorm.weight": "model-00005-of-00024.safetensors",
|
871 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00005-of-00024.safetensors",
|
872 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00004-of-00024.safetensors",
|
873 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00004-of-00024.safetensors",
|
874 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00004-of-00024.safetensors",
|
875 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00004-of-00024.safetensors",
|
876 |
+
"model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00024.safetensors",
|
877 |
+
"model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00024.safetensors",
|
878 |
+
"model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00024.safetensors",
|
879 |
+
"model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00024.safetensors",
|
880 |
+
"model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00024.safetensors",
|
881 |
+
"model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00024.safetensors",
|
882 |
+
"model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00024.safetensors",
|
883 |
+
"model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00024.safetensors",
|
884 |
+
"model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00024.safetensors",
|
885 |
+
"model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00024.safetensors",
|
886 |
+
"model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00024.safetensors",
|
887 |
+
"model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00024.safetensors",
|
888 |
+
"model.layers.6.block_sparse_moe.experts.4.w1.weight": "model-00005-of-00024.safetensors",
|
889 |
+
"model.layers.6.block_sparse_moe.experts.4.w2.weight": "model-00005-of-00024.safetensors",
|
890 |
+
"model.layers.6.block_sparse_moe.experts.4.w3.weight": "model-00005-of-00024.safetensors",
|
891 |
+
"model.layers.6.block_sparse_moe.experts.5.w1.weight": "model-00005-of-00024.safetensors",
|
892 |
+
"model.layers.6.block_sparse_moe.experts.5.w2.weight": "model-00005-of-00024.safetensors",
|
893 |
+
"model.layers.6.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00024.safetensors",
|
894 |
+
"model.layers.6.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00024.safetensors",
|
895 |
+
"model.layers.6.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00024.safetensors",
|
896 |
+
"model.layers.6.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00024.safetensors",
|
897 |
+
"model.layers.6.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00024.safetensors",
|
898 |
+
"model.layers.6.block_sparse_moe.experts.7.w2.weight": "model-00006-of-00024.safetensors",
|
899 |
+
"model.layers.6.block_sparse_moe.experts.7.w3.weight": "model-00006-of-00024.safetensors",
|
900 |
+
"model.layers.6.block_sparse_moe.gate.weight": "model-00005-of-00024.safetensors",
|
901 |
+
"model.layers.6.input_layernorm.weight": "model-00006-of-00024.safetensors",
|
902 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00006-of-00024.safetensors",
|
903 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00005-of-00024.safetensors",
|
904 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00005-of-00024.safetensors",
|
905 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00005-of-00024.safetensors",
|
906 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00005-of-00024.safetensors",
|
907 |
+
"model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00024.safetensors",
|
908 |
+
"model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00006-of-00024.safetensors",
|
909 |
+
"model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00006-of-00024.safetensors",
|
910 |
+
"model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00006-of-00024.safetensors",
|
911 |
+
"model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00006-of-00024.safetensors",
|
912 |
+
"model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00006-of-00024.safetensors",
|
913 |
+
"model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00006-of-00024.safetensors",
|
914 |
+
"model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00006-of-00024.safetensors",
|
915 |
+
"model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00006-of-00024.safetensors",
|
916 |
+
"model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00006-of-00024.safetensors",
|
917 |
+
"model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00006-of-00024.safetensors",
|
918 |
+
"model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00006-of-00024.safetensors",
|
919 |
+
"model.layers.7.block_sparse_moe.experts.4.w1.weight": "model-00006-of-00024.safetensors",
|
920 |
+
"model.layers.7.block_sparse_moe.experts.4.w2.weight": "model-00006-of-00024.safetensors",
|
921 |
+
"model.layers.7.block_sparse_moe.experts.4.w3.weight": "model-00006-of-00024.safetensors",
|
922 |
+
"model.layers.7.block_sparse_moe.experts.5.w1.weight": "model-00006-of-00024.safetensors",
|
923 |
+
"model.layers.7.block_sparse_moe.experts.5.w2.weight": "model-00006-of-00024.safetensors",
|
924 |
+
"model.layers.7.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00024.safetensors",
|
925 |
+
"model.layers.7.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00024.safetensors",
|
926 |
+
"model.layers.7.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00024.safetensors",
|
927 |
+
"model.layers.7.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00024.safetensors",
|
928 |
+
"model.layers.7.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00024.safetensors",
|
929 |
+
"model.layers.7.block_sparse_moe.experts.7.w2.weight": "model-00006-of-00024.safetensors",
|
930 |
+
"model.layers.7.block_sparse_moe.experts.7.w3.weight": "model-00006-of-00024.safetensors",
|
931 |
+
"model.layers.7.block_sparse_moe.gate.weight": "model-00006-of-00024.safetensors",
|
932 |
+
"model.layers.7.input_layernorm.weight": "model-00006-of-00024.safetensors",
|
933 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00006-of-00024.safetensors",
|
934 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00006-of-00024.safetensors",
|
935 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00006-of-00024.safetensors",
|
936 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00006-of-00024.safetensors",
|
937 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00006-of-00024.safetensors",
|
938 |
+
"model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00024.safetensors",
|
939 |
+
"model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00007-of-00024.safetensors",
|
940 |
+
"model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00007-of-00024.safetensors",
|
941 |
+
"model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00007-of-00024.safetensors",
|
942 |
+
"model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00007-of-00024.safetensors",
|
943 |
+
"model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00007-of-00024.safetensors",
|
944 |
+
"model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00007-of-00024.safetensors",
|
945 |
+
"model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00007-of-00024.safetensors",
|
946 |
+
"model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00007-of-00024.safetensors",
|
947 |
+
"model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00007-of-00024.safetensors",
|
948 |
+
"model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00007-of-00024.safetensors",
|
949 |
+
"model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00007-of-00024.safetensors",
|
950 |
+
"model.layers.8.block_sparse_moe.experts.4.w1.weight": "model-00007-of-00024.safetensors",
|
951 |
+
"model.layers.8.block_sparse_moe.experts.4.w2.weight": "model-00007-of-00024.safetensors",
|
952 |
+
"model.layers.8.block_sparse_moe.experts.4.w3.weight": "model-00007-of-00024.safetensors",
|
953 |
+
"model.layers.8.block_sparse_moe.experts.5.w1.weight": "model-00007-of-00024.safetensors",
|
954 |
+
"model.layers.8.block_sparse_moe.experts.5.w2.weight": "model-00007-of-00024.safetensors",
|
955 |
+
"model.layers.8.block_sparse_moe.experts.5.w3.weight": "model-00007-of-00024.safetensors",
|
956 |
+
"model.layers.8.block_sparse_moe.experts.6.w1.weight": "model-00007-of-00024.safetensors",
|
957 |
+
"model.layers.8.block_sparse_moe.experts.6.w2.weight": "model-00007-of-00024.safetensors",
|
958 |
+
"model.layers.8.block_sparse_moe.experts.6.w3.weight": "model-00007-of-00024.safetensors",
|
959 |
+
"model.layers.8.block_sparse_moe.experts.7.w1.weight": "model-00007-of-00024.safetensors",
|
960 |
+
"model.layers.8.block_sparse_moe.experts.7.w2.weight": "model-00007-of-00024.safetensors",
|
961 |
+
"model.layers.8.block_sparse_moe.experts.7.w3.weight": "model-00007-of-00024.safetensors",
|
962 |
+
"model.layers.8.block_sparse_moe.gate.weight": "model-00006-of-00024.safetensors",
|
963 |
+
"model.layers.8.input_layernorm.weight": "model-00007-of-00024.safetensors",
|
964 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00007-of-00024.safetensors",
|
965 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00006-of-00024.safetensors",
|
966 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00006-of-00024.safetensors",
|
967 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00006-of-00024.safetensors",
|
968 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00006-of-00024.safetensors",
|
969 |
+
"model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00007-of-00024.safetensors",
|
970 |
+
"model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00007-of-00024.safetensors",
|
971 |
+
"model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00007-of-00024.safetensors",
|
972 |
+
"model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00007-of-00024.safetensors",
|
973 |
+
"model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00007-of-00024.safetensors",
|
974 |
+
"model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00007-of-00024.safetensors",
|
975 |
+
"model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00007-of-00024.safetensors",
|
976 |
+
"model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00007-of-00024.safetensors",
|
977 |
+
"model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00007-of-00024.safetensors",
|
978 |
+
"model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00007-of-00024.safetensors",
|
979 |
+
"model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00008-of-00024.safetensors",
|
980 |
+
"model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00008-of-00024.safetensors",
|
981 |
+
"model.layers.9.block_sparse_moe.experts.4.w1.weight": "model-00008-of-00024.safetensors",
|
982 |
+
"model.layers.9.block_sparse_moe.experts.4.w2.weight": "model-00008-of-00024.safetensors",
|
983 |
+
"model.layers.9.block_sparse_moe.experts.4.w3.weight": "model-00008-of-00024.safetensors",
|
984 |
+
"model.layers.9.block_sparse_moe.experts.5.w1.weight": "model-00008-of-00024.safetensors",
|
985 |
+
"model.layers.9.block_sparse_moe.experts.5.w2.weight": "model-00008-of-00024.safetensors",
|
986 |
+
"model.layers.9.block_sparse_moe.experts.5.w3.weight": "model-00008-of-00024.safetensors",
|
987 |
+
"model.layers.9.block_sparse_moe.experts.6.w1.weight": "model-00008-of-00024.safetensors",
|
988 |
+
"model.layers.9.block_sparse_moe.experts.6.w2.weight": "model-00008-of-00024.safetensors",
|
989 |
+
"model.layers.9.block_sparse_moe.experts.6.w3.weight": "model-00008-of-00024.safetensors",
|
990 |
+
"model.layers.9.block_sparse_moe.experts.7.w1.weight": "model-00008-of-00024.safetensors",
|
991 |
+
"model.layers.9.block_sparse_moe.experts.7.w2.weight": "model-00008-of-00024.safetensors",
|
992 |
+
"model.layers.9.block_sparse_moe.experts.7.w3.weight": "model-00008-of-00024.safetensors",
|
993 |
+
"model.layers.9.block_sparse_moe.gate.weight": "model-00007-of-00024.safetensors",
|
994 |
+
"model.layers.9.input_layernorm.weight": "model-00008-of-00024.safetensors",
|
995 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00008-of-00024.safetensors",
|
996 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00007-of-00024.safetensors",
|
997 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00007-of-00024.safetensors",
|
998 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00007-of-00024.safetensors",
|
999 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00007-of-00024.safetensors",
|
1000 |
+
"model.norm.weight": "model-00024-of-00024.safetensors"
|
1001 |
+
}
|
1002 |
+
}
|
output-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3623f8f38bd0419865295dde58bfa208bf6074d4eb59d23e26fc7a8059d4d38e
|
3 |
+
size 8585272016
|
output-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8047da25e52a0c1de35b348044ab5e87a64e8f082b8e9871b30b8810ce52405
|
3 |
+
size 8589489512
|
output-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50e5e4a65e3d7007ca539605774ff60185410ab0ea8ea644458dcbd2dc36bdb1
|
3 |
+
size 3536178592
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": null,
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false,
|
42 |
+
"chat_template": "{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- '[INST] <<SYS>>\\n' + messages[idx]['content'] + '\\n<</SYS>>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}"
|
43 |
+
}
|