File size: 8,790 Bytes
9031f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import math
from typing import Optional, Tuple

import torch
import torch.nn as nn
from transformers.models.llama.modeling_llama import (
    Cache,
    LlamaAttention,
    LlamaFlashAttention2,
    apply_rotary_pos_emb,
    repeat_kv,
)
from transformers.utils import logging


logger = logging.get_logger(__name__)


# Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
def llama_torch_attn_forward(
    self: "LlamaAttention",
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional["Cache"] = None,
    output_attentions: bool = False,
    **kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    bsz, q_len, _ = hidden_states.size()

    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)

    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

    kv_seq_len = key_states.shape[-2]
    if past_key_value is not None:
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

    if past_key_value is not None:
        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

    key_states = repeat_kv(key_states, self.num_key_value_groups)
    value_states = repeat_kv(value_states, self.num_key_value_groups)

    if getattr(self.config, "group_size_ratio", None) and self.training:  # shift
        groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
        assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
        num_groups = q_len // groupsz

        def shift(state: torch.Tensor) -> torch.Tensor:
            state = state.transpose(1, 2)  # output: (bsz, seq_len, n_heads, head_dim)
            state = torch.cat(
                (state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
                dim=2,
            )
            return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2)

        query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
        if attention_mask is not None:
            attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)

    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

    if attention_mask is not None:
        attn_weights = attn_weights + attention_mask

    # upcast attention to fp32
    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
    attn_output = torch.matmul(attn_weights, value_states)  # (bsz, :, seq_len, :) or (bsz*n_group, :, groupsz, :)
    attn_output = attn_output.transpose(1, 2).contiguous()

    if getattr(self.config, "group_size_ratio", None) and self.training:  # shift back
        attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
        attn_output = torch.cat(
            (
                attn_output[:, :, : self.num_heads // 2],
                attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
            )
        )

    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
    attn_output = self.o_proj(attn_output)

    if not output_attentions:
        attn_weights = None

    return attn_output, attn_weights, past_key_value


# Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
def llama_flash_attn_forward(
    self: "LlamaFlashAttention2",
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
    output_attentions: bool = False,
    **kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    # LlamaFlashAttention2 attention does not support output_attentions
    output_attentions = False

    bsz, q_len, _ = hidden_states.size()

    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)

    # FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim)
    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

    kv_seq_len = key_states.shape[-2]
    if past_key_value is not None:
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

    if past_key_value is not None:
        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

    key_states = repeat_kv(key_states, self.num_key_value_groups)
    value_states = repeat_kv(value_states, self.num_key_value_groups)

    query_states = query_states.transpose(1, 2)  # (bsz, seq_len, n_heads, head_dim)
    key_states = key_states.transpose(1, 2)  # (bsz, seq_len, n_heads, head_dim)
    value_states = value_states.transpose(1, 2)  # (bsz, seq_len, n_heads, head_dim)

    dropout_rate = self.attention_dropout if self.training else 0.0

    input_dtype = query_states.dtype
    if input_dtype == torch.float32:
        if torch.is_autocast_enabled():
            target_dtype = torch.get_autocast_gpu_dtype()
        elif hasattr(self.config, "_pre_quantization_dtype"):
            target_dtype = self.config._pre_quantization_dtype
        else:
            target_dtype = self.q_proj.weight.dtype

        logger.warning_once("The input hidden states seems to be silently casted in float32.")
        query_states = query_states.to(target_dtype)
        key_states = key_states.to(target_dtype)
        value_states = value_states.to(target_dtype)

    if getattr(self.config, "group_size_ratio", None) and self.training:  # shift
        groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
        assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
        num_groups = q_len // groupsz

        def shift(state: torch.Tensor) -> torch.Tensor:
            state = torch.cat(
                (state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
                dim=2,
            )
            return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim)

        query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
        if attention_mask is not None:
            attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)

    attn_output: torch.Tensor = self._flash_attention_forward(
        query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
    )

    if getattr(self.config, "group_size_ratio", None) and self.training:  # shift back
        attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
        attn_output = torch.cat(
            (
                attn_output[:, :, : self.num_heads // 2],
                attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
            )
        )

    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
    attn_output = self.o_proj(attn_output)

    if not output_attentions:
        attn_weights = None

    return attn_output, attn_weights, past_key_value


def apply_llama_patch() -> None:
    LlamaAttention.forward = llama_torch_attn_forward
    LlamaFlashAttention2.forward = llama_flash_attn_forward