File size: 4,257 Bytes
9031f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import json
import os
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn as nn
from transformers import Seq2SeqTrainer

from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger


if TYPE_CHECKING:
    from transformers.trainer import PredictionOutput


logger = get_logger(__name__)


class CustomSeq2SeqTrainer(Seq2SeqTrainer):
    r"""
    Inherits PeftTrainer to compute generative metrics such as BLEU and ROUGE.
    """

    def prediction_step(
        self,
        model: nn.Module,
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
    ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
        r"""
        Removes the prompt part in the generated tokens.

        Subclass and override to inject custom behavior.
        """
        labels = inputs["labels"].detach().clone() if "labels" in inputs else None  # backup labels
        if self.args.predict_with_generate:
            assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
            prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
            if prompt_len > label_len:
                inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
            if label_len > prompt_len:  # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
                inputs["labels"] = inputs["labels"][:, :prompt_len]

        loss, generated_tokens, _ = super().prediction_step(  # ignore the returned labels (may be truncated)
            model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
        )
        if generated_tokens is not None and self.args.predict_with_generate:
            generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
            generated_tokens = generated_tokens.contiguous()

        return loss, generated_tokens, labels

    def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
        r"""
        Pads the tensor to the same length as the target tensor.
        """
        assert self.tokenizer.pad_token_id is not None, "Pad token is required."
        padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
        padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor  # adopt left-padding
        return padded_tensor.contiguous()  # in contiguous memory

    def save_predictions(self, predict_results: "PredictionOutput") -> None:
        r"""
        Saves model predictions to `output_dir`.

        A custom behavior that not contained in Seq2SeqTrainer.
        """
        if not self.is_world_process_zero():
            return

        output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
        logger.info(f"Saving prediction results to {output_prediction_file}")

        labels = np.where(
            predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
        )
        preds = np.where(
            predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
        )

        for i in range(len(preds)):
            pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
            if len(pad_len):
                preds[i] = np.concatenate(
                    (preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1
                )  # move pad token to last

        decoded_labels = self.tokenizer.batch_decode(
            labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )
        decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)

        with open(output_prediction_file, "w", encoding="utf-8") as writer:
            res: List[str] = []
            for label, pred in zip(decoded_labels, decoded_preds):
                res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
            writer.write("\n".join(res))