|
from dataclasses import dataclass, field |
|
from typing import Literal, Optional |
|
|
|
|
|
@dataclass |
|
class DataArguments: |
|
r""" |
|
Arguments pertaining to what data we are going to input our model for training and evaluation. |
|
""" |
|
template: Optional[str] = field( |
|
default=None, metadata={"help": "Which template to use for constructing prompts in training and inference."} |
|
) |
|
dataset: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."}, |
|
) |
|
dataset_dir: Optional[str] = field( |
|
default="data", metadata={"help": "Path to the folder containing the datasets."} |
|
) |
|
split: Optional[str] = field( |
|
default="train", metadata={"help": "Which dataset split to use for training and evaluation."} |
|
) |
|
cutoff_len: Optional[int] = field( |
|
default=1024, metadata={"help": "The maximum length of the model inputs after tokenization."} |
|
) |
|
reserved_label_len: Optional[int] = field( |
|
default=1, metadata={"help": "The maximum length reserved for label after tokenization."} |
|
) |
|
train_on_prompt: Optional[bool] = field( |
|
default=False, metadata={"help": "Whether to disable the mask on the prompt or not."} |
|
) |
|
streaming: Optional[bool] = field(default=False, metadata={"help": "Enable dataset streaming."}) |
|
buffer_size: Optional[int] = field( |
|
default=16384, metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."} |
|
) |
|
mix_strategy: Optional[Literal["concat", "interleave_under", "interleave_over"]] = field( |
|
default="concat", |
|
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."}, |
|
) |
|
interleave_probs: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."}, |
|
) |
|
overwrite_cache: Optional[bool] = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets."} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, metadata={"help": "The number of processes to use for the preprocessing."} |
|
) |
|
max_samples: Optional[int] = field( |
|
default=None, metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."} |
|
) |
|
eval_num_beams: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}, |
|
) |
|
ignore_pad_token_for_loss: Optional[bool] = field( |
|
default=True, |
|
metadata={ |
|
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." |
|
}, |
|
) |
|
val_size: Optional[float] = field( |
|
default=0, metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."} |
|
) |
|
sft_packing: Optional[bool] = field( |
|
default=False, metadata={"help": "Packing the questions and answers in the supervised fine-tuning stage."} |
|
) |
|
cache_path: Optional[str] = field( |
|
default=None, metadata={"help": "Path to save or load the preprocessed datasets."} |
|
) |
|
|
|
def __post_init__(self): |
|
if self.reserved_label_len >= self.cutoff_len: |
|
raise ValueError("`reserved_label_len` must be smaller than `cutoff_len`.") |
|
|
|
if self.streaming and self.val_size > 1e-6 and self.val_size < 1: |
|
raise ValueError("Streaming mode should have an integer val size.") |
|
|
|
if self.streaming and self.max_samples is not None: |
|
raise ValueError("`max_samples` is incompatible with `streaming`.") |
|
|