|
import json |
|
import os |
|
from dataclasses import dataclass |
|
from typing import TYPE_CHECKING, List, Literal, Optional |
|
|
|
from ..extras.constants import DATA_CONFIG |
|
from ..extras.misc import use_modelscope |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ..hparams import DataArguments |
|
|
|
|
|
@dataclass |
|
class DatasetAttr: |
|
load_from: Literal["hf_hub", "ms_hub", "script", "file"] |
|
dataset_name: Optional[str] = None |
|
dataset_sha1: Optional[str] = None |
|
subset: Optional[str] = None |
|
folder: Optional[str] = None |
|
ranking: Optional[bool] = False |
|
formatting: Optional[Literal["alpaca", "sharegpt"]] = "alpaca" |
|
|
|
system: Optional[str] = None |
|
|
|
prompt: Optional[str] = "instruction" |
|
query: Optional[str] = "input" |
|
response: Optional[str] = "output" |
|
history: Optional[str] = None |
|
|
|
messages: Optional[str] = "conversations" |
|
tools: Optional[str] = None |
|
|
|
role_tag: Optional[str] = "from" |
|
content_tag: Optional[str] = "value" |
|
user_tag: Optional[str] = "human" |
|
assistant_tag: Optional[str] = "gpt" |
|
observation_tag: Optional[str] = "observation" |
|
function_tag: Optional[str] = "function_call" |
|
|
|
def __repr__(self) -> str: |
|
return self.dataset_name |
|
|
|
|
|
def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]: |
|
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")] if data_args.dataset is not None else [] |
|
try: |
|
with open(os.path.join(data_args.dataset_dir, DATA_CONFIG), "r") as f: |
|
dataset_info = json.load(f) |
|
except Exception as err: |
|
if data_args.dataset is not None: |
|
raise ValueError( |
|
"Cannot open {} due to {}.".format(os.path.join(data_args.dataset_dir, DATA_CONFIG), str(err)) |
|
) |
|
dataset_info = None |
|
|
|
if data_args.interleave_probs is not None: |
|
data_args.interleave_probs = [float(prob.strip()) for prob in data_args.interleave_probs.split(",")] |
|
|
|
dataset_list: List[DatasetAttr] = [] |
|
for name in dataset_names: |
|
if name not in dataset_info: |
|
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG)) |
|
|
|
has_hf_url = "hf_hub_url" in dataset_info[name] |
|
has_ms_url = "ms_hub_url" in dataset_info[name] |
|
|
|
if has_hf_url or has_ms_url: |
|
if (use_modelscope() and has_ms_url) or (not has_hf_url): |
|
dataset_attr = DatasetAttr("ms_hub", dataset_name=dataset_info[name]["ms_hub_url"]) |
|
else: |
|
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"]) |
|
elif "script_url" in dataset_info[name]: |
|
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"]) |
|
else: |
|
dataset_attr = DatasetAttr( |
|
"file", |
|
dataset_name=dataset_info[name]["file_name"], |
|
dataset_sha1=dataset_info[name].get("file_sha1", None), |
|
) |
|
|
|
dataset_attr.subset = dataset_info[name].get("subset", None) |
|
dataset_attr.folder = dataset_info[name].get("folder", None) |
|
dataset_attr.ranking = dataset_info[name].get("ranking", False) |
|
dataset_attr.formatting = dataset_info[name].get("formatting", "alpaca") |
|
|
|
if "columns" in dataset_info[name]: |
|
if dataset_attr.formatting == "alpaca": |
|
column_names = ["prompt", "query", "response", "history"] |
|
else: |
|
column_names = ["messages", "tools"] |
|
|
|
column_names += ["system"] |
|
for column_name in column_names: |
|
setattr(dataset_attr, column_name, dataset_info[name]["columns"].get(column_name, None)) |
|
|
|
if dataset_attr.formatting == "sharegpt" and "tags" in dataset_info[name]: |
|
for tag in ["role_tag", "content_tag", "user_tag", "assistant_tag", "observation_tag", "function_tag"]: |
|
setattr(dataset_attr, tag, dataset_info[name]["tags"].get(tag, None)) |
|
|
|
dataset_list.append(dataset_attr) |
|
|
|
return dataset_list |
|
|