|
from functools import partial |
|
from itertools import chain |
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Tuple |
|
|
|
from ..extras.constants import IGNORE_INDEX |
|
from ..extras.logging import get_logger |
|
from .utils import Role |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import Seq2SeqTrainingArguments |
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
|
|
from ..hparams import DataArguments |
|
from .template import Template |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def preprocess_pretrain_dataset( |
|
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments" |
|
) -> Dict[str, List[List[int]]]: |
|
|
|
text_examples = [examples["prompt"][i][0]["content"] for i in range(len(examples["prompt"]))] |
|
tokenized_examples = tokenizer(text_examples, add_special_tokens=False) |
|
for i in range(len(tokenized_examples["input_ids"])): |
|
tokenized_examples["input_ids"][i] += [tokenizer.eos_token_id] |
|
tokenized_examples["attention_mask"][i] += [1] |
|
|
|
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()} |
|
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]]) |
|
block_size = data_args.cutoff_len |
|
|
|
total_length = (total_length // block_size) * block_size |
|
|
|
result = { |
|
k: [t[i : i + block_size] for i in range(0, total_length, block_size)] |
|
for k, t in concatenated_examples.items() |
|
} |
|
return result |
|
|
|
|
|
def preprocess_supervised_dataset( |
|
examples: Dict[str, List[Any]], |
|
tokenizer: "PreTrainedTokenizer", |
|
template: "Template", |
|
data_args: "DataArguments", |
|
) -> Dict[str, List[List[int]]]: |
|
|
|
|
|
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} |
|
|
|
for i in range(len(examples["prompt"])): |
|
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: |
|
continue |
|
|
|
messages = examples["prompt"][i] + examples["response"][i] |
|
input_ids, labels = [], [] |
|
for turn_idx, (source_ids, target_ids) in enumerate( |
|
template.encode_multiturn( |
|
tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len |
|
) |
|
): |
|
if data_args.train_on_prompt: |
|
source_mask = source_ids |
|
elif turn_idx != 0 and template.efficient_eos: |
|
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1) |
|
else: |
|
source_mask = [IGNORE_INDEX] * len(source_ids) |
|
|
|
input_ids += source_ids + target_ids |
|
labels += source_mask + target_ids |
|
|
|
if template.efficient_eos: |
|
input_ids += [tokenizer.eos_token_id] |
|
labels += [tokenizer.eos_token_id] |
|
|
|
model_inputs["input_ids"].append(input_ids) |
|
model_inputs["attention_mask"].append([1] * len(input_ids)) |
|
model_inputs["labels"].append(labels) |
|
|
|
return model_inputs |
|
|
|
|
|
def preprocess_packed_supervised_dataset( |
|
examples: Dict[str, List[Any]], |
|
tokenizer: "PreTrainedTokenizer", |
|
template: "Template", |
|
data_args: "DataArguments", |
|
) -> Dict[str, List[List[int]]]: |
|
|
|
|
|
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} |
|
input_ids, labels = [], [] |
|
for i in range(len(examples["prompt"])): |
|
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: |
|
continue |
|
|
|
messages = examples["prompt"][i] + examples["response"][i] |
|
for turn_idx, (source_ids, target_ids) in enumerate( |
|
template.encode_multiturn(tokenizer, messages, examples["system"][i], examples["tools"][i]) |
|
): |
|
if data_args.train_on_prompt: |
|
source_mask = source_ids |
|
elif turn_idx != 0 and template.efficient_eos: |
|
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1) |
|
else: |
|
source_mask = [IGNORE_INDEX] * len(source_ids) |
|
|
|
input_ids += source_ids + target_ids |
|
labels += source_mask + target_ids |
|
|
|
if template.efficient_eos: |
|
input_ids += [tokenizer.eos_token_id] |
|
labels += [tokenizer.eos_token_id] |
|
|
|
total_length = len(input_ids) |
|
block_size = data_args.cutoff_len |
|
|
|
total_length = (total_length // block_size) * block_size |
|
|
|
for i in range(0, total_length, block_size): |
|
model_inputs["input_ids"].append(input_ids[i : i + block_size]) |
|
model_inputs["attention_mask"].append([1] * block_size) |
|
model_inputs["labels"].append(labels[i : i + block_size]) |
|
|
|
return model_inputs |
|
|
|
|
|
def preprocess_unsupervised_dataset( |
|
examples: Dict[str, List[Any]], |
|
tokenizer: "PreTrainedTokenizer", |
|
template: "Template", |
|
data_args: "DataArguments", |
|
) -> Dict[str, List[List[int]]]: |
|
|
|
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} |
|
|
|
for i in range(len(examples["prompt"])): |
|
if len(examples["prompt"][i]) % 2 != 1: |
|
continue |
|
|
|
if len(examples["response"][i]) == 1: |
|
messages = examples["prompt"][i] + examples["response"][i] |
|
else: |
|
messages = examples["prompt"][i] + [{"role": Role.ASSISTANT, "content": ""}] |
|
|
|
input_ids, labels = template.encode_oneturn( |
|
tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len |
|
) |
|
|
|
if template.efficient_eos: |
|
labels += [tokenizer.eos_token_id] |
|
|
|
model_inputs["input_ids"].append(input_ids) |
|
model_inputs["attention_mask"].append([1] * len(input_ids)) |
|
model_inputs["labels"].append(labels) |
|
|
|
return model_inputs |
|
|
|
|
|
def preprocess_pairwise_dataset( |
|
examples: Dict[str, List[Any]], |
|
tokenizer: "PreTrainedTokenizer", |
|
template: "Template", |
|
data_args: "DataArguments", |
|
) -> Dict[str, List[List[int]]]: |
|
|
|
model_inputs = {"prompt_ids": [], "chosen_ids": [], "rejected_ids": []} |
|
for i in range(len(examples["prompt"])): |
|
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2: |
|
continue |
|
|
|
chosen_messages = examples["prompt"][i] + [examples["response"][i][0]] |
|
rejected_messages = examples["prompt"][i] + [examples["response"][i][1]] |
|
|
|
prompt_ids, chosen_ids = template.encode_oneturn( |
|
tokenizer, chosen_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len |
|
) |
|
_, rejected_ids = template.encode_oneturn( |
|
tokenizer, rejected_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len |
|
) |
|
|
|
if template.efficient_eos: |
|
chosen_ids += [tokenizer.eos_token_id] |
|
rejected_ids += [tokenizer.eos_token_id] |
|
|
|
model_inputs["prompt_ids"].append(prompt_ids) |
|
model_inputs["chosen_ids"].append(chosen_ids) |
|
model_inputs["rejected_ids"].append(rejected_ids) |
|
|
|
return model_inputs |
|
|
|
|
|
def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: |
|
print("input_ids:\n{}".format(example["input_ids"])) |
|
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) |
|
print("label_ids:\n{}".format(example["labels"])) |
|
print( |
|
"labels:\n{}".format( |
|
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False) |
|
) |
|
) |
|
|
|
|
|
def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: |
|
print("prompt_ids:\n{}".format(example["prompt_ids"])) |
|
print("prompt:\n{}".format(tokenizer.decode(example["prompt_ids"], skip_special_tokens=False))) |
|
print("chosen_ids:\n{}".format(example["chosen_ids"])) |
|
print("chosen:\n{}".format(tokenizer.decode(example["chosen_ids"], skip_special_tokens=False))) |
|
print("rejected_ids:\n{}".format(example["rejected_ids"])) |
|
print("rejected:\n{}".format(tokenizer.decode(example["rejected_ids"], skip_special_tokens=False))) |
|
|
|
|
|
def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: |
|
print("input_ids:\n{}".format(example["input_ids"])) |
|
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) |
|
|
|
|
|
def get_preprocess_and_print_func( |
|
tokenizer: "PreTrainedTokenizer", |
|
template: "Template", |
|
data_args: "DataArguments", |
|
training_args: "Seq2SeqTrainingArguments", |
|
stage: Literal["pt", "sft", "rm", "ppo"], |
|
) -> Tuple[Callable, Callable]: |
|
if stage == "pt": |
|
preprocess_func = partial(preprocess_pretrain_dataset, tokenizer=tokenizer, data_args=data_args) |
|
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer) |
|
elif stage == "sft" and not training_args.predict_with_generate: |
|
if data_args.sft_packing: |
|
preprocess_func = partial( |
|
preprocess_packed_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args |
|
) |
|
else: |
|
preprocess_func = partial( |
|
preprocess_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args |
|
) |
|
|
|
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer) |
|
elif stage == "rm": |
|
preprocess_func = partial( |
|
preprocess_pairwise_dataset, tokenizer=tokenizer, template=template, data_args=data_args |
|
) |
|
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer) |
|
else: |
|
preprocess_func = partial( |
|
preprocess_unsupervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args |
|
) |
|
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer) |
|
|
|
return preprocess_func, print_function |
|
|