|
from dataclasses import dataclass |
|
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union |
|
|
|
from ..extras.logging import get_logger |
|
from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter |
|
from .utils import Role, infer_max_len |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedTokenizer |
|
|
|
from .formatter import Formatter |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class Template: |
|
format_user: "Formatter" |
|
format_assistant: "Formatter" |
|
format_system: "Formatter" |
|
format_function: "Formatter" |
|
format_observation: "Formatter" |
|
format_tools: "Formatter" |
|
format_separator: "Formatter" |
|
default_system: str |
|
stop_words: List[str] |
|
efficient_eos: bool |
|
replace_eos: bool |
|
force_system: bool |
|
|
|
def encode_oneturn( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
messages: List[Dict[str, str]], |
|
system: Optional[str] = None, |
|
tools: Optional[str] = None, |
|
cutoff_len: Optional[int] = 1_000_000, |
|
reserved_label_len: Optional[int] = 16, |
|
) -> Tuple[List[int], List[int]]: |
|
r""" |
|
Returns a single pair of token ids representing prompt and response respectively. |
|
""" |
|
encoded_pairs = self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len) |
|
prompt_ids = [] |
|
for query_ids, resp_ids in encoded_pairs[:-1]: |
|
prompt_ids += query_ids + resp_ids |
|
prompt_ids = prompt_ids + encoded_pairs[-1][0] |
|
answer_ids = encoded_pairs[-1][1] |
|
return prompt_ids, answer_ids |
|
|
|
def encode_multiturn( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
messages: List[Dict[str, str]], |
|
system: Optional[str] = None, |
|
tools: Optional[str] = None, |
|
cutoff_len: Optional[int] = 1_000_000, |
|
reserved_label_len: Optional[int] = 16, |
|
) -> Sequence[Tuple[List[int], List[int]]]: |
|
r""" |
|
Returns multiple pairs of token ids representing prompts and responses respectively. |
|
""" |
|
return self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len) |
|
|
|
def _encode( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
messages: List[Dict[str, str]], |
|
system: str, |
|
tools: str, |
|
cutoff_len: int, |
|
reserved_label_len: int, |
|
) -> Sequence[Tuple[List[int], List[int]]]: |
|
r""" |
|
Encodes formatted inputs to pairs of token ids. |
|
Turn 0: system + query resp |
|
Turn t: sep + query resp |
|
""" |
|
system = system or self.default_system |
|
encoded_messages = [] |
|
for i, message in enumerate(messages): |
|
elements = [] |
|
if i == 0 and (system or tools or self.force_system): |
|
tool_text = self.format_tools.apply(content=tools)[0] if tools else "" |
|
elements += self.format_system.apply(content=(system + tool_text)) |
|
elif i > 0 and i % 2 == 0: |
|
elements += self.format_separator.apply() |
|
|
|
if message["role"] == Role.USER: |
|
elements += self.format_user.apply(content=message["content"], idx=str(i // 2)) |
|
elif message["role"] == Role.ASSISTANT: |
|
elements += self.format_assistant.apply(content=message["content"]) |
|
elif message["role"] == Role.OBSERVATION: |
|
elements += self.format_observation.apply(content=message["content"]) |
|
elif message["role"] == Role.FUNCTION: |
|
elements += self.format_function.apply(content=message["content"]) |
|
else: |
|
raise NotImplementedError |
|
|
|
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) |
|
|
|
return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len) |
|
|
|
def _convert_elements_to_ids( |
|
self, tokenizer: "PreTrainedTokenizer", elements: List[Union[str, Dict[str, str]]] |
|
) -> List[int]: |
|
r""" |
|
Converts elements to token ids. |
|
""" |
|
token_ids = [] |
|
for elem in elements: |
|
if isinstance(elem, str): |
|
if len(elem) != 0: |
|
token_ids += tokenizer.encode(elem, add_special_tokens=False) |
|
elif isinstance(elem, dict): |
|
token_ids += [tokenizer.convert_tokens_to_ids(elem.get("token"))] |
|
elif isinstance(elem, set): |
|
if "bos_token" in elem and tokenizer.bos_token_id: |
|
token_ids += [tokenizer.bos_token_id] |
|
elif "eos_token" in elem and tokenizer.eos_token_id: |
|
token_ids += [tokenizer.eos_token_id] |
|
else: |
|
raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(elem))) |
|
|
|
return token_ids |
|
|
|
def _make_pairs( |
|
self, |
|
encoded_messages: Sequence[List[int]], |
|
cutoff_len: int, |
|
reserved_label_len: int, |
|
) -> Sequence[Tuple[List[int], List[int]]]: |
|
encoded_pairs = [] |
|
total_length = 0 |
|
for i in range(0, len(encoded_messages), 2): |
|
if total_length >= cutoff_len: |
|
break |
|
|
|
max_source_len, max_target_len = infer_max_len( |
|
source_len=len(encoded_messages[i]), |
|
target_len=len(encoded_messages[i + 1]), |
|
max_len=(cutoff_len - total_length), |
|
reserved_label_len=reserved_label_len, |
|
) |
|
encoded_messages[i] = encoded_messages[i][:max_source_len] |
|
encoded_messages[i + 1] = encoded_messages[i + 1][:max_target_len] |
|
total_length += len(encoded_messages[i]) + len(encoded_messages[i + 1]) |
|
encoded_pairs.append((encoded_messages[i], encoded_messages[i + 1])) |
|
|
|
return encoded_pairs |
|
|
|
|
|
@dataclass |
|
class Llama2Template(Template): |
|
def _encode( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
messages: List[Dict[str, str]], |
|
system: str, |
|
tools: str, |
|
cutoff_len: int, |
|
reserved_label_len: int, |
|
) -> Sequence[Tuple[List[int], List[int]]]: |
|
r""" |
|
Encodes formatted inputs to pairs of token ids. |
|
Turn 0: system + query resp |
|
Turn t: sep + query resp |
|
""" |
|
system = system or self.default_system |
|
encoded_messages = [] |
|
for i, message in enumerate(messages): |
|
elements = [] |
|
system_text = "" |
|
if i == 0 and (system or tools or self.force_system): |
|
tool_text = self.format_tools.apply(content=tools)[0] if tools else "" |
|
system_text = self.format_system.apply(content=(system + tool_text))[0] |
|
elif i > 0 and i % 2 == 0: |
|
elements += self.format_separator.apply() |
|
|
|
if message["role"] == Role.USER: |
|
elements += self.format_user.apply(content=system_text + message["content"]) |
|
elif message["role"] == Role.ASSISTANT: |
|
elements += self.format_assistant.apply(content=message["content"]) |
|
elif message["role"] == Role.OBSERVATION: |
|
elements += self.format_observation.apply(content=message["content"]) |
|
elif message["role"] == Role.FUNCTION: |
|
elements += self.format_function.apply(content=message["content"]) |
|
else: |
|
raise NotImplementedError |
|
|
|
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) |
|
|
|
return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len) |
|
|
|
|
|
templates: Dict[str, Template] = {} |
|
|
|
|
|
def register_template( |
|
name: str, |
|
format_user: Optional["Formatter"] = None, |
|
format_assistant: Optional["Formatter"] = None, |
|
format_system: Optional["Formatter"] = None, |
|
format_function: Optional["Formatter"] = None, |
|
format_observation: Optional["Formatter"] = None, |
|
format_tools: Optional["Formatter"] = None, |
|
format_separator: Optional["Formatter"] = None, |
|
default_system: Optional[str] = "", |
|
stop_words: Optional[List[str]] = [], |
|
efficient_eos: Optional[bool] = False, |
|
replace_eos: Optional[bool] = False, |
|
force_system: Optional[bool] = False, |
|
) -> None: |
|
eos_slots = [] if efficient_eos else [{"eos_token"}] |
|
template_class = Llama2Template if name.startswith("llama2") else Template |
|
default_user_formatter = StringFormatter(slots=["{{content}}"]) |
|
default_assistant_formatter = StringFormatter(slots=["{{content}}"] + eos_slots) |
|
default_function_formatter = FunctionFormatter(slots=["Action: {{name}}\nAction Input: {{arguments}}"] + eos_slots) |
|
default_tool_formatter = ToolFormatter(slots="default") |
|
default_separator_formatter = EmptyFormatter() |
|
templates[name] = template_class( |
|
format_user=format_user or default_user_formatter, |
|
format_assistant=format_assistant or default_assistant_formatter, |
|
format_system=format_system or default_user_formatter, |
|
format_function=format_function or default_function_formatter, |
|
format_observation=format_observation or format_user or default_user_formatter, |
|
format_tools=format_tools or default_tool_formatter, |
|
format_separator=format_separator or default_separator_formatter, |
|
default_system=default_system, |
|
stop_words=stop_words, |
|
efficient_eos=efficient_eos, |
|
replace_eos=replace_eos, |
|
force_system=force_system, |
|
) |
|
|
|
|
|
def get_template_and_fix_tokenizer(name: str, tokenizer: "PreTrainedTokenizer") -> Template: |
|
if tokenizer.eos_token_id is None: |
|
tokenizer.eos_token = "<|endoftext|>" |
|
logger.info("Add eos token: {}".format(tokenizer.eos_token)) |
|
|
|
if tokenizer.pad_token_id is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
logger.info("Add pad token: {}".format(tokenizer.pad_token)) |
|
|
|
if name is None: |
|
return None |
|
|
|
template = templates.get(name, None) |
|
assert template is not None, "Template {} does not exist.".format(name) |
|
|
|
stop_words = template.stop_words |
|
if template.replace_eos: |
|
if not stop_words: |
|
raise ValueError("Stop words are required to replace the EOS token.") |
|
|
|
tokenizer.eos_token = stop_words[0] |
|
stop_words = stop_words[1:] |
|
logger.info("Replace eos token: {}".format(tokenizer.eos_token)) |
|
|
|
if stop_words: |
|
tokenizer.add_special_tokens( |
|
dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False |
|
) |
|
logger.info("Add {} to stop words.".format(",".join(stop_words))) |
|
|
|
return template |
|
|
|
|
|
register_template( |
|
name="alpaca", |
|
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]), |
|
format_separator=EmptyFormatter(slots=["\n\n"]), |
|
default_system=( |
|
"Below is an instruction that describes a task. " "Write a response that appropriately completes the request." |
|
), |
|
) |
|
|
|
|
|
register_template( |
|
name="aquila", |
|
format_user=StringFormatter(slots=["Human: {{content}}###Assistant:"]), |
|
format_separator=EmptyFormatter(slots=["###"]), |
|
default_system=( |
|
"A chat between a curious human and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the human's questions." |
|
), |
|
stop_words=["</s>"], |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="baichuan", |
|
format_user=StringFormatter(slots=[{"token": "<reserved_102>"}, "{{content}}", {"token": "<reserved_103>"}]), |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="baichuan2", |
|
format_user=StringFormatter(slots=[{"token": "<reserved_106>"}, "{{content}}", {"token": "<reserved_107>"}]), |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="belle", |
|
format_user=StringFormatter(slots=["Human: {{content}}\n\nBelle: "]), |
|
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), |
|
format_separator=EmptyFormatter(slots=["\n\n"]), |
|
force_system=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="bluelm", |
|
format_user=StringFormatter(slots=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]), |
|
) |
|
|
|
|
|
register_template( |
|
name="chatglm2", |
|
format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]), |
|
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), |
|
format_separator=EmptyFormatter(slots=["\n\n"]), |
|
efficient_eos=True, |
|
force_system=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="chatglm3", |
|
format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]), |
|
format_assistant=StringFormatter(slots=["\n", "{{content}}"]), |
|
format_system=StringFormatter( |
|
slots=[{"token": "[gMASK]"}, {"token": "sop"}, {"token": "<|system|>"}, "\n", "{{content}}"] |
|
), |
|
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]), |
|
format_observation=StringFormatter(slots=[{"token": "<|observation|>"}, "\n", "{{content}}"]), |
|
default_system=( |
|
"You are ChatGLM3, a large language model trained by Zhipu.AI. " |
|
"Follow the user's instructions carefully. Respond using markdown." |
|
), |
|
stop_words=["<|user|>", "<|observation|>"], |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="codegeex2", |
|
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), |
|
force_system=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="deepseek", |
|
format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]), |
|
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), |
|
force_system=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="deepseekcoder", |
|
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n### Response:\n"]), |
|
format_separator=EmptyFormatter(slots=["\n", {"token": "<|EOT|>"}, "\n"]), |
|
default_system=( |
|
"You are an AI programming assistant, utilizing the Deepseek Coder model, " |
|
"developed by Deepseek Company, and you only answer questions related to computer science. " |
|
"For politically sensitive questions, security and privacy issues, " |
|
"and other non-computer science questions, you will refuse to answer\n" |
|
), |
|
stop_words=["<|EOT|>"], |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="default", |
|
format_user=StringFormatter(slots=["Human: {{content}}\nAssistant: "]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
) |
|
|
|
|
|
register_template( |
|
name="falcon", |
|
format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="intern", |
|
format_user=StringFormatter(slots=["<|User|>:{{content}}", {"token": "<eoh>"}, "\n<|Bot|>:"]), |
|
format_separator=EmptyFormatter(slots=[{"token": "<eoa>"}, "\n"]), |
|
stop_words=["<eoa>"], |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="intern2", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=[{"bos_token"}, "<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
default_system=( |
|
"You are an AI assistant whose name is InternLM (书生·浦语).\n" |
|
"- InternLM (书生·浦语) is a conversational language model that is developed " |
|
"by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n" |
|
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen " |
|
"by the user such as English and 中文." |
|
), |
|
stop_words=["<|im_end|>"], |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="llama2", |
|
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), |
|
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]), |
|
default_system=( |
|
"You are a helpful, respectful and honest assistant. " |
|
"Always answer as helpfully as possible, while being safe. " |
|
"Your answers should not include any harmful, unethical, " |
|
"racist, sexist, toxic, dangerous, or illegal content. " |
|
"Please ensure that your responses are socially unbiased and positive in nature.\n\n" |
|
"If a question does not make any sense, or is not factually coherent, " |
|
"explain why instead of answering something not correct. " |
|
"If you don't know the answer to a question, please don't share false information." |
|
), |
|
) |
|
|
|
|
|
register_template( |
|
name="llama2_zh", |
|
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), |
|
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]), |
|
default_system="You are a helpful assistant. 你是一个乐于助人的助手。", |
|
) |
|
|
|
|
|
register_template( |
|
name="mistral", |
|
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]), |
|
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), |
|
force_system=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="openchat", |
|
format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]), |
|
format_assistant=StringFormatter(slots=["{{content}}"]), |
|
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), |
|
force_system=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="orion", |
|
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: </s>"]), |
|
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), |
|
force_system=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="qwen", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
default_system="You are a helpful assistant.", |
|
stop_words=["<|im_end|>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="solar", |
|
format_user=StringFormatter(slots=["### User:\n{{content}}\n\n### Assistant:\n"]), |
|
format_system=StringFormatter(slots=["### System:\n{{content}}\n\n"]), |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="starchat", |
|
format_user=StringFormatter( |
|
slots=[{"token": "<|user|>"}, "\n{{content}}", {"token": "<|end|>"}, "\n", {"token": "<|assistant|>"}] |
|
), |
|
format_system=StringFormatter(slots=[{"token": "<|system|>"}, "\n{{content}}", {"token": "<|end|>"}, "\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
stop_words=["<|end|>"], |
|
replace_eos=True, |
|
force_system=True, |
|
) |
|
|
|
|
|
register_template(name="vanilla") |
|
|
|
|
|
register_template( |
|
name="vicuna", |
|
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), |
|
default_system=( |
|
"A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions." |
|
), |
|
) |
|
|
|
|
|
register_template( |
|
name="xuanyuan", |
|
format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]), |
|
default_system=( |
|
"以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头," |
|
"会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、" |
|
"不安全、有争议、政治敏感等相关的话题、问题和指示。\n" |
|
), |
|
) |
|
|
|
|
|
register_template(name="xverse", format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: "])) |
|
|
|
|
|
register_template( |
|
name="yayi", |
|
format_user=StringFormatter(slots=[{"token": "<|Human|>"}, ":\n{{content}}\n\n", {"token": "<|YaYi|>"}, ":"]), |
|
format_system=StringFormatter(slots=[{"token": "<|System|>"}, ":\n{{content}}\n\n"]), |
|
format_separator=EmptyFormatter(slots=["\n\n"]), |
|
default_system=( |
|
"You are a helpful, respectful and honest assistant named YaYi " |
|
"developed by Beijing Wenge Technology Co.,Ltd. " |
|
"Always answer as helpfully as possible, while being safe. " |
|
"Your answers should not include any harmful, unethical, " |
|
"racist, sexist, toxic, dangerous, or illegal content. " |
|
"Please ensure that your responses are socially unbiased and positive in nature.\n\n" |
|
"If a question does not make any sense, or is not factually coherent, " |
|
"explain why instead of answering something not correct. " |
|
"If you don't know the answer to a question, please don't share false information." |
|
), |
|
stop_words=["<|End|>"], |
|
) |
|
|
|
|
|
register_template( |
|
name="yi", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
stop_words=["<|im_end|>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="yuan", |
|
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
stop_words=["<eod>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
register_template( |
|
name="zephyr", |
|
format_user=StringFormatter(slots=["<|user|>\n{{content}}", {"eos_token"}, "<|assistant|>"]), |
|
format_system=StringFormatter(slots=["<|system|>\n{{content}}", {"eos_token"}]), |
|
default_system="You are a friendly chatbot who always responds in the style of a pirate", |
|
) |
|
|
|
|
|
register_template( |
|
name="ziya", |
|
format_user=StringFormatter(slots=[{"token": "<human>"}, ":{{content}}\n", {"token": "<bot>"}, ":"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
) |
|
|