|
import hashlib |
|
from enum import Enum, unique |
|
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union |
|
|
|
from ..extras.logging import get_logger |
|
|
|
|
|
if TYPE_CHECKING: |
|
from datasets import Dataset, IterableDataset |
|
from transformers import TrainingArguments |
|
|
|
from llmtuner.hparams import DataArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
@unique |
|
class Role(str, Enum): |
|
USER = "user" |
|
ASSISTANT = "assistant" |
|
OBSERVATION = "observation" |
|
FUNCTION = "function" |
|
|
|
|
|
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None: |
|
if file_sha1 is None: |
|
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.") |
|
return |
|
|
|
if len(data_files) != 1: |
|
logger.warning("Checksum failed: too many files.") |
|
return |
|
|
|
with open(data_files[0], "rb") as f: |
|
sha1 = hashlib.sha1(f.read()).hexdigest() |
|
if sha1 != file_sha1: |
|
logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0])) |
|
|
|
|
|
def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]: |
|
max_target_len = int(max_len * (target_len / (source_len + target_len))) |
|
max_target_len = max(max_target_len, reserved_label_len) |
|
max_source_len = max_len - max_target_len |
|
return max_source_len, max_target_len |
|
|
|
|
|
def split_dataset( |
|
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "TrainingArguments" |
|
) -> Dict[str, "Dataset"]: |
|
if training_args.do_train: |
|
if data_args.val_size > 1e-6: |
|
if data_args.streaming: |
|
val_set = dataset.take(int(data_args.val_size)) |
|
train_set = dataset.skip(int(data_args.val_size)) |
|
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) |
|
return {"train_dataset": train_set, "eval_dataset": val_set} |
|
else: |
|
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size |
|
dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed) |
|
return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]} |
|
else: |
|
if data_args.streaming: |
|
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) |
|
return {"train_dataset": dataset} |
|
else: |
|
return {"eval_dataset": dataset} |
|
|