|
import gc |
|
import os |
|
from typing import TYPE_CHECKING, Dict, Tuple |
|
|
|
import torch |
|
from peft import PeftModel |
|
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList, PreTrainedModel |
|
from transformers.utils import ( |
|
SAFE_WEIGHTS_NAME, |
|
WEIGHTS_NAME, |
|
is_torch_bf16_gpu_available, |
|
is_torch_cuda_available, |
|
is_torch_npu_available, |
|
is_torch_xpu_available, |
|
) |
|
|
|
from .constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME |
|
from .logging import get_logger |
|
|
|
|
|
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available() |
|
try: |
|
_is_bf16_available = is_torch_bf16_gpu_available() |
|
except Exception: |
|
_is_bf16_available = False |
|
|
|
|
|
if TYPE_CHECKING: |
|
from trl import AutoModelForCausalLMWithValueHead |
|
|
|
from llmtuner.hparams import ModelArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
class AverageMeter: |
|
r""" |
|
Computes and stores the average and current value. |
|
""" |
|
|
|
def __init__(self): |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
|
|
def update(self, val, n=1): |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
|
|
|
|
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]: |
|
r""" |
|
Returns the number of trainable parameters and number of all parameters in the model. |
|
""" |
|
trainable_params, all_param = 0, 0 |
|
for param in model.parameters(): |
|
num_params = param.numel() |
|
|
|
if num_params == 0 and hasattr(param, "ds_numel"): |
|
num_params = param.ds_numel |
|
|
|
|
|
if param.__class__.__name__ == "Params4bit": |
|
num_params = num_params * 2 |
|
|
|
all_param += num_params |
|
if param.requires_grad: |
|
trainable_params += num_params |
|
|
|
return trainable_params, all_param |
|
|
|
|
|
def fix_valuehead_checkpoint( |
|
model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool |
|
) -> None: |
|
r""" |
|
The model is already unwrapped. |
|
|
|
There are three cases: |
|
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...} |
|
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...} |
|
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...} |
|
|
|
We assume `stage3_gather_16bit_weights_on_model_save=true`. |
|
""" |
|
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)): |
|
return |
|
|
|
if safe_serialization: |
|
from safetensors import safe_open |
|
from safetensors.torch import save_file |
|
|
|
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME) |
|
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f: |
|
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()} |
|
else: |
|
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME) |
|
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu") |
|
|
|
decoder_state_dict = {} |
|
v_head_state_dict = {} |
|
for name, param in state_dict.items(): |
|
if name.startswith("v_head."): |
|
v_head_state_dict[name] = param |
|
else: |
|
decoder_state_dict[name.replace("pretrained_model.", "")] = param |
|
|
|
os.remove(path_to_checkpoint) |
|
model.pretrained_model.save_pretrained( |
|
output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization |
|
) |
|
|
|
if safe_serialization: |
|
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"}) |
|
else: |
|
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME)) |
|
|
|
logger.info("Value head model saved at: {}".format(output_dir)) |
|
|
|
|
|
def get_current_device() -> torch.device: |
|
r""" |
|
Gets the current available device. |
|
""" |
|
if is_torch_xpu_available(): |
|
device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0")) |
|
elif is_torch_npu_available(): |
|
device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0")) |
|
elif is_torch_cuda_available(): |
|
device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0")) |
|
else: |
|
device = "cpu" |
|
|
|
return torch.device(device) |
|
|
|
|
|
def get_device_count() -> int: |
|
return torch.cuda.device_count() |
|
|
|
|
|
def get_logits_processor() -> "LogitsProcessorList": |
|
r""" |
|
Gets logits processor that removes NaN and Inf logits. |
|
""" |
|
logits_processor = LogitsProcessorList() |
|
logits_processor.append(InfNanRemoveLogitsProcessor()) |
|
return logits_processor |
|
|
|
|
|
def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype: |
|
r""" |
|
Infers the optimal dtype according to the model_dtype and device compatibility. |
|
""" |
|
if _is_bf16_available and model_dtype == torch.bfloat16: |
|
return torch.bfloat16 |
|
elif _is_fp16_available: |
|
return torch.float16 |
|
else: |
|
return torch.float32 |
|
|
|
|
|
def torch_gc() -> None: |
|
r""" |
|
Collects GPU memory. |
|
""" |
|
gc.collect() |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
|
|
|
|
def try_download_model_from_ms(model_args: "ModelArguments") -> None: |
|
if not use_modelscope() or os.path.exists(model_args.model_name_or_path): |
|
return |
|
|
|
try: |
|
from modelscope import snapshot_download |
|
|
|
revision = "master" if model_args.model_revision == "main" else model_args.model_revision |
|
model_args.model_name_or_path = snapshot_download( |
|
model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir |
|
) |
|
except ImportError: |
|
raise ImportError("Please install modelscope via `pip install modelscope -U`") |
|
|
|
|
|
def use_modelscope() -> bool: |
|
return bool(int(os.environ.get("USE_MODELSCOPE_HUB", "0"))) |
|
|