|
import json |
|
from dataclasses import asdict, dataclass, field |
|
from typing import Literal, Optional |
|
|
|
|
|
@dataclass |
|
class FreezeArguments: |
|
r""" |
|
Arguments pertaining to the freeze (partial-parameter) training. |
|
""" |
|
name_module_trainable: Optional[str] = field( |
|
default="mlp", |
|
metadata={ |
|
"help": 'Name of trainable modules for partial-parameter (freeze) fine-tuning. \ |
|
Use commas to separate multiple modules. \ |
|
LLaMA choices: ["mlp", "self_attn"], \ |
|
BLOOM & Falcon & ChatGLM choices: ["mlp", "self_attention"], \ |
|
Qwen choices: ["mlp", "attn"], \ |
|
Phi choices: ["mlp", "mixer"], \ |
|
Others choices: the same as LLaMA.' |
|
}, |
|
) |
|
num_layer_trainable: Optional[int] = field( |
|
default=3, metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."} |
|
) |
|
|
|
|
|
@dataclass |
|
class LoraArguments: |
|
r""" |
|
Arguments pertaining to the LoRA training. |
|
""" |
|
additional_target: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint." |
|
}, |
|
) |
|
lora_alpha: Optional[int] = field( |
|
default=None, metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."} |
|
) |
|
lora_dropout: Optional[float] = field(default=0.0, metadata={"help": "Dropout rate for the LoRA fine-tuning."}) |
|
lora_rank: Optional[int] = field(default=8, metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}) |
|
lora_target: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": 'Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \ |
|
LLaMA choices: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], \ |
|
BLOOM & Falcon & ChatGLM choices: ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"], \ |
|
Baichuan choices: ["W_pack", "o_proj", "gate_proj", "up_proj", "down_proj"], \ |
|
Qwen choices: ["c_attn", "attn.c_proj", "w1", "w2", "mlp.c_proj"], \ |
|
Phi choices: ["Wqkv", "out_proj", "fc1", "fc2"], \ |
|
Others choices: the same as LLaMA.' |
|
}, |
|
) |
|
lora_bf16_mode: Optional[bool] = field( |
|
default=False, metadata={"help": "Whether or not to train lora adapters in bf16 precision."} |
|
) |
|
create_new_adapter: Optional[bool] = field( |
|
default=False, metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."} |
|
) |
|
|
|
|
|
@dataclass |
|
class RLHFArguments: |
|
r""" |
|
Arguments pertaining to the PPO and DPO training. |
|
""" |
|
dpo_beta: Optional[float] = field(default=0.1, metadata={"help": "The beta parameter for the DPO loss."}) |
|
dpo_loss: Optional[Literal["sigmoid", "hinge", "ipo", "kto"]] = field( |
|
default="sigmoid", metadata={"help": "The type of DPO loss to use."} |
|
) |
|
dpo_ftx: Optional[float] = field( |
|
default=0, metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."} |
|
) |
|
ppo_buffer_size: Optional[int] = field( |
|
default=1, |
|
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."}, |
|
) |
|
ppo_epochs: Optional[int] = field( |
|
default=4, metadata={"help": "The number of epochs to perform in a PPO optimization step."} |
|
) |
|
ppo_logger: Optional[str] = field( |
|
default=None, metadata={"help": 'Log with either "wandb" or "tensorboard" in PPO training.'} |
|
) |
|
ppo_score_norm: Optional[bool] = field( |
|
default=False, metadata={"help": "Use score normalization in PPO training."} |
|
) |
|
ppo_target: Optional[float] = field( |
|
default=6.0, metadata={"help": "Target KL value for adaptive KL control in PPO training."} |
|
) |
|
ppo_whiten_rewards: Optional[bool] = field( |
|
default=False, metadata={"help": "Whiten the rewards before compute advantages in PPO training."} |
|
) |
|
ref_model: Optional[str] = field( |
|
default=None, metadata={"help": "Path to the reference model used for the PPO or DPO training."} |
|
) |
|
ref_model_adapters: Optional[str] = field( |
|
default=None, metadata={"help": "Path to the adapters of the reference model."} |
|
) |
|
ref_model_quantization_bit: Optional[int] = field( |
|
default=None, metadata={"help": "The number of bits to quantize the reference model."} |
|
) |
|
reward_model: Optional[str] = field( |
|
default=None, metadata={"help": "Path to the reward model used for the PPO training."} |
|
) |
|
reward_model_adapters: Optional[str] = field( |
|
default=None, metadata={"help": "Path to the adapters of the reward model."} |
|
) |
|
reward_model_quantization_bit: Optional[int] = field( |
|
default=None, metadata={"help": "The number of bits to quantize the reward model."} |
|
) |
|
reward_model_type: Optional[Literal["lora", "full", "api"]] = field( |
|
default="lora", |
|
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."}, |
|
) |
|
|
|
|
|
@dataclass |
|
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments): |
|
r""" |
|
Arguments pertaining to which techniques we are going to fine-tuning with. |
|
""" |
|
stage: Optional[Literal["pt", "sft", "rm", "ppo", "dpo"]] = field( |
|
default="sft", metadata={"help": "Which stage will be performed in training."} |
|
) |
|
finetuning_type: Optional[Literal["lora", "freeze", "full"]] = field( |
|
default="lora", metadata={"help": "Which fine-tuning method to use."} |
|
) |
|
plot_loss: Optional[bool] = field( |
|
default=False, metadata={"help": "Whether or not to save the training loss curves."} |
|
) |
|
|
|
def __post_init__(self): |
|
def split_arg(arg): |
|
if isinstance(arg, str): |
|
return [item.strip() for item in arg.split(",")] |
|
return arg |
|
|
|
self.name_module_trainable = split_arg(self.name_module_trainable) |
|
self.lora_alpha = self.lora_alpha or self.lora_rank * 2 |
|
self.lora_target = split_arg(self.lora_target) |
|
self.additional_target = split_arg(self.additional_target) |
|
|
|
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method." |
|
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." |
|
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." |
|
|
|
if self.stage == "ppo" and self.reward_model is None: |
|
raise ValueError("Reward model is necessary for PPO training.") |
|
|
|
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora": |
|
raise ValueError("Freeze/Full PPO training needs `reward_model_type=full`.") |
|
|
|
def save_to_json(self, json_path: str): |
|
r"""Saves the content of this instance in JSON format inside `json_path`.""" |
|
json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n" |
|
with open(json_path, "w", encoding="utf-8") as f: |
|
f.write(json_string) |
|
|
|
@classmethod |
|
def load_from_json(cls, json_path: str): |
|
r"""Creates an instance from the content of `json_path`.""" |
|
with open(json_path, "r", encoding="utf-8") as f: |
|
text = f.read() |
|
|
|
return cls(**json.loads(text)) |
|
|