|
import inspect |
|
from typing import TYPE_CHECKING |
|
|
|
import torch |
|
from peft import LoraConfig, PeftModel, TaskType, get_peft_model |
|
from transformers.integrations import is_deepspeed_zero3_enabled |
|
|
|
from ..extras.logging import get_logger |
|
from .utils import find_all_linear_modules |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers.modeling_utils import PreTrainedModel |
|
|
|
from ..hparams import FinetuningArguments, ModelArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def init_adapter( |
|
model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool |
|
) -> "PreTrainedModel": |
|
r""" |
|
Initializes the adapters. |
|
|
|
Support full-parameter, freeze and LoRA training. |
|
|
|
Note that the trainable parameters must be cast to float32. |
|
""" |
|
|
|
if (not is_trainable) and model_args.adapter_name_or_path is None: |
|
logger.info("Adapter is not found at evaluation, load the base model.") |
|
return model |
|
|
|
if finetuning_args.finetuning_type == "full" and is_trainable: |
|
logger.info("Fine-tuning method: Full") |
|
model = model.float() |
|
|
|
if finetuning_args.finetuning_type == "freeze" and is_trainable: |
|
logger.info("Fine-tuning method: Freeze") |
|
num_layers = ( |
|
getattr(model.config, "num_hidden_layers", None) |
|
or getattr(model.config, "num_layers", None) |
|
or getattr(model.config, "n_layer", None) |
|
) |
|
if not num_layers: |
|
raise ValueError("Current model does not support freeze tuning.") |
|
|
|
if finetuning_args.num_layer_trainable > 0: |
|
trainable_layer_ids = [num_layers - k - 1 for k in range(finetuning_args.num_layer_trainable)] |
|
else: |
|
trainable_layer_ids = [k for k in range(-finetuning_args.num_layer_trainable)] |
|
|
|
trainable_layers = [] |
|
for module_name in finetuning_args.name_module_trainable: |
|
for idx in trainable_layer_ids: |
|
trainable_layers.append("{:d}.{}".format(idx, module_name)) |
|
|
|
for name, param in model.named_parameters(): |
|
if not any(trainable_layer in name for trainable_layer in trainable_layers): |
|
param.requires_grad_(False) |
|
else: |
|
param.data = param.data.to(torch.float32) |
|
|
|
if finetuning_args.finetuning_type == "lora": |
|
logger.info("Fine-tuning method: LoRA") |
|
adapter_to_resume = None |
|
|
|
if model_args.adapter_name_or_path is not None: |
|
is_mergeable = True |
|
if getattr(model, "quantization_method", None): |
|
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter." |
|
is_mergeable = False |
|
|
|
if is_deepspeed_zero3_enabled(): |
|
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3." |
|
is_mergeable = False |
|
|
|
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable): |
|
adapter_to_merge = model_args.adapter_name_or_path[:-1] |
|
adapter_to_resume = model_args.adapter_name_or_path[-1] |
|
else: |
|
adapter_to_merge = model_args.adapter_name_or_path |
|
|
|
for adapter in adapter_to_merge: |
|
model = PeftModel.from_pretrained(model, adapter) |
|
model = model.merge_and_unload() |
|
|
|
if len(adapter_to_merge) > 0: |
|
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge))) |
|
|
|
if adapter_to_resume is not None: |
|
model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable) |
|
|
|
if is_trainable and adapter_to_resume is None: |
|
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all": |
|
target_modules = find_all_linear_modules(model) |
|
else: |
|
target_modules = finetuning_args.lora_target |
|
|
|
peft_kwargs = { |
|
"r": finetuning_args.lora_rank, |
|
"target_modules": target_modules, |
|
"lora_alpha": finetuning_args.lora_alpha, |
|
"lora_dropout": finetuning_args.lora_dropout, |
|
} |
|
|
|
if model_args.use_unsloth: |
|
from unsloth import FastLlamaModel, FastMistralModel |
|
|
|
unsloth_peft_kwargs = {"model": model, "max_seq_length": model_args.model_max_length} |
|
if "loftq_config" in inspect.signature(FastLlamaModel.get_peft_model).parameters: |
|
unsloth_peft_kwargs["loftq_config"] = {} |
|
|
|
if getattr(model.config, "model_type", None) == "llama": |
|
model = FastLlamaModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs) |
|
elif getattr(model.config, "model_type", None) == "mistral": |
|
model = FastMistralModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs) |
|
else: |
|
raise NotImplementedError |
|
|
|
else: |
|
lora_config = LoraConfig( |
|
task_type=TaskType.CAUSAL_LM, |
|
inference_mode=False, |
|
modules_to_save=finetuning_args.additional_target, |
|
**peft_kwargs, |
|
) |
|
model = get_peft_model(model, lora_config) |
|
|
|
for param in filter(lambda p: p.requires_grad, model.parameters()): |
|
param.data = param.data.to(torch.bfloat16 if finetuning_args.lora_bf16_mode else torch.float32) |
|
|
|
if model_args.adapter_name_or_path is not None: |
|
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path))) |
|
|
|
return model |
|
|