|
import math |
|
import os |
|
import random |
|
from contextlib import nullcontext |
|
from types import MethodType |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple |
|
|
|
import torch |
|
from datasets import load_dataset |
|
from transformers import BitsAndBytesConfig, GPTQConfig, PreTrainedModel, PreTrainedTokenizerBase |
|
from transformers.integrations import is_deepspeed_zero3_enabled |
|
from transformers.utils.versions import require_version |
|
|
|
from ..extras.constants import FILEEXT2TYPE, LAYERNORM_NAMES |
|
from ..extras.logging import get_logger |
|
from ..extras.misc import get_current_device, infer_optim_dtype |
|
from ..extras.packages import is_flash_attn2_available |
|
from ..extras.patches.llama_patch import apply_llama_patch |
|
from ..extras.patches.mixtral_patch import patch_mixtral_replace_moe_impl |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PretrainedConfig, PreTrainedTokenizer |
|
from trl import AutoModelForCausalLMWithValueHead |
|
|
|
from ..hparams import ModelArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
SUPPORTED_CLASS_FOR_S2ATTN = ["llama"] |
|
|
|
|
|
def _noisy_mean_initialization(embed_weight: torch.Tensor, num_new_tokens: int): |
|
embedding_dim = embed_weight.size(1) |
|
avg_weight = embed_weight[:-num_new_tokens].mean(dim=0, keepdim=True) |
|
noise_weight = torch.empty_like(embed_weight[-num_new_tokens:]) |
|
noise_weight.normal_(mean=0, std=(1.0 / math.sqrt(embedding_dim))) |
|
embed_weight[-num_new_tokens:] = avg_weight + noise_weight |
|
|
|
|
|
def _resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer") -> None: |
|
r""" |
|
Resize token embeddings. |
|
""" |
|
if is_deepspeed_zero3_enabled(): |
|
import deepspeed |
|
|
|
params = [model.get_input_embeddings().weight] |
|
if model.get_output_embeddings() is not None and not model.config.tie_word_embeddings: |
|
params.append(model.get_output_embeddings().weight) |
|
|
|
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0) |
|
else: |
|
context_maybe_zero3 = nullcontext() |
|
|
|
with context_maybe_zero3: |
|
current_embedding_size = model.get_input_embeddings().weight.size(0) |
|
|
|
if len(tokenizer) > current_embedding_size: |
|
if not isinstance(model.get_output_embeddings(), torch.nn.Linear): |
|
logger.warning("Current model does not support resizing token embeddings.") |
|
return |
|
|
|
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64) |
|
with context_maybe_zero3: |
|
new_embedding_size = model.get_input_embeddings().weight.size(0) |
|
num_new_tokens = new_embedding_size - current_embedding_size |
|
_noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens) |
|
_noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens) |
|
|
|
logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size)) |
|
|
|
|
|
def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> List[str]: |
|
r""" |
|
Inspired by: https://github.com/huggingface/optimum/blob/v1.16.0/optimum/gptq/data.py#L133 |
|
TODO: remove tokenizer.decode() https://github.com/huggingface/optimum/pull/1600 |
|
""" |
|
if os.path.isfile(model_args.export_quantization_dataset): |
|
data_path = FILEEXT2TYPE.get(model_args.export_quantization_dataset.split(".")[-1], None) |
|
data_files = model_args.export_quantization_dataset |
|
else: |
|
data_path = model_args.export_quantization_dataset |
|
data_files = None |
|
|
|
dataset = load_dataset(path=data_path, data_files=data_files, split="train", cache_dir=model_args.cache_dir) |
|
maxlen = model_args.export_quantization_maxlen |
|
|
|
samples = [] |
|
for _ in range(model_args.export_quantization_nsamples): |
|
while True: |
|
sample_idx = random.randint(0, len(dataset) - 1) |
|
sample: Dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt") |
|
if sample["input_ids"].size(1) >= maxlen: |
|
break |
|
|
|
word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1) |
|
input_ids = sample["input_ids"][:, word_idx : word_idx + maxlen] |
|
samples.append(tokenizer.decode(input_ids[0].tolist(), skip_special_tokens=True)) |
|
|
|
return samples |
|
|
|
|
|
def _configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: |
|
if not hasattr(config, "rope_scaling"): |
|
logger.warning("Current model does not support RoPE scaling.") |
|
return |
|
|
|
if is_trainable: |
|
if model_args.rope_scaling == "dynamic": |
|
logger.warning( |
|
"Dynamic NTK scaling may not work well with fine-tuning. " |
|
"See: https://github.com/huggingface/transformers/pull/24653" |
|
) |
|
|
|
current_max_length = getattr(config, "max_position_embeddings", None) |
|
if current_max_length and model_args.model_max_length > current_max_length: |
|
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length)) |
|
else: |
|
logger.warning("Input length is smaller than max length. Consider increase input length.") |
|
scaling_factor = 1.0 |
|
else: |
|
scaling_factor = 2.0 |
|
|
|
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor}) |
|
logger.info( |
|
"Using {} scaling strategy and setting scaling factor to {}".format(model_args.rope_scaling, scaling_factor) |
|
) |
|
|
|
|
|
def _configure_flashattn(config_kwargs: Dict[str, Any]) -> None: |
|
if not is_flash_attn2_available(): |
|
logger.warning("FlashAttention2 is not installed.") |
|
return |
|
|
|
config_kwargs["use_flash_attention_2"] = True |
|
logger.info("Using FlashAttention-2 for faster training and inference.") |
|
|
|
|
|
def _configure_longlora(config: "PretrainedConfig") -> None: |
|
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN: |
|
setattr(config, "group_size_ratio", 0.25) |
|
apply_llama_patch() |
|
logger.info("Using shift short attention with group_size_ratio=1/4.") |
|
else: |
|
logger.warning("Current model does not support shift short attention.") |
|
|
|
|
|
def _configure_quantization( |
|
config: "PretrainedConfig", |
|
tokenizer: "PreTrainedTokenizer", |
|
model_args: "ModelArguments", |
|
config_kwargs: Dict[str, Any], |
|
) -> None: |
|
r""" |
|
Priority: GPTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training) |
|
""" |
|
if getattr(config, "quantization_config", None): |
|
if is_deepspeed_zero3_enabled(): |
|
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.") |
|
|
|
config_kwargs["device_map"] = {"": get_current_device()} |
|
quantization_config: Dict[str, Any] = getattr(config, "quantization_config", None) |
|
if quantization_config.get("quant_method", None) == "gptq" and quantization_config.get("bits", -1) == 4: |
|
quantization_config["use_exllama"] = False |
|
logger.info("Loading {}-bit GPTQ-quantized model.".format(quantization_config.get("bits", -1))) |
|
|
|
elif model_args.export_quantization_bit is not None: |
|
require_version("optimum>=1.16.0", "To fix: pip install optimum>=1.16.0") |
|
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0") |
|
from accelerate.utils import get_max_memory |
|
|
|
if getattr(config, "model_type", None) == "chatglm": |
|
raise ValueError("ChatGLM model is not supported.") |
|
|
|
config_kwargs["quantization_config"] = GPTQConfig( |
|
bits=model_args.export_quantization_bit, |
|
tokenizer=tokenizer, |
|
dataset=_get_quantization_dataset(tokenizer, model_args), |
|
) |
|
config_kwargs["device_map"] = "auto" |
|
config_kwargs["max_memory"] = get_max_memory() |
|
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit)) |
|
|
|
elif model_args.quantization_bit is not None: |
|
if is_deepspeed_zero3_enabled(): |
|
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.") |
|
|
|
if model_args.quantization_bit == 8: |
|
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0") |
|
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) |
|
|
|
elif model_args.quantization_bit == 4: |
|
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0") |
|
config_kwargs["quantization_config"] = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=model_args.compute_dtype, |
|
bnb_4bit_use_double_quant=model_args.double_quantization, |
|
bnb_4bit_quant_type=model_args.quantization_type, |
|
) |
|
|
|
config_kwargs["device_map"] = {"": get_current_device()} |
|
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit)) |
|
|
|
|
|
def _prepare_model_for_training( |
|
model: "PreTrainedModel", model_args: "ModelArguments", output_layer_name: Optional[str] = "lm_head" |
|
) -> None: |
|
r""" |
|
Includes: |
|
(1) cast the layernorm in fp32 |
|
(2) make output embedding layer require grads |
|
(3) add the upcasting of the lm_head in fp32 |
|
Inspired by: https://github.com/huggingface/peft/blob/v0.7.1/src/peft/utils/other.py#L72 |
|
""" |
|
if model_args.upcast_layernorm: |
|
for name, param in model.named_parameters(): |
|
if param.ndim == 1 and any(ln_name in name for ln_name in LAYERNORM_NAMES): |
|
param.data = param.data.to(torch.float32) |
|
logger.info("Upcasting layernorm weights in float32.") |
|
|
|
if not model_args.disable_gradient_checkpointing: |
|
if not getattr(model, "supports_gradient_checkpointing", False): |
|
logger.warning("Current model does not support gradient checkpointing.") |
|
else: |
|
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False}) |
|
model.enable_input_require_grads() |
|
model.config.use_cache = False |
|
logger.info("Gradient checkpointing enabled.") |
|
|
|
if hasattr(model, output_layer_name) and model_args.upcast_lmhead_output: |
|
|
|
def fp32_forward_post_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor): |
|
return output.to(torch.float32) |
|
|
|
output_layer = getattr(model, output_layer_name) |
|
if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32: |
|
output_layer.register_forward_hook(fp32_forward_post_hook) |
|
|
|
|
|
def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None: |
|
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__): |
|
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer) |
|
|
|
|
|
def patch_config( |
|
config: "PretrainedConfig", |
|
tokenizer: "PreTrainedTokenizer", |
|
model_args: "ModelArguments", |
|
config_kwargs: Dict[str, Any], |
|
is_trainable: bool, |
|
) -> None: |
|
if model_args.compute_dtype is None: |
|
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None)) |
|
|
|
if getattr(config, "model_type", None) == "qwen": |
|
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]: |
|
setattr(config, dtype_name, model_args.compute_dtype == dtype) |
|
|
|
if model_args.rope_scaling is not None: |
|
_configure_rope(config, model_args, is_trainable) |
|
|
|
if model_args.flash_attn: |
|
_configure_flashattn(config_kwargs) |
|
|
|
if is_trainable and model_args.shift_attn: |
|
_configure_longlora(config) |
|
|
|
_configure_quantization(config, tokenizer, model_args, config_kwargs) |
|
|
|
|
|
def patch_model( |
|
model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments", is_trainable: bool |
|
) -> None: |
|
if "GenerationMixin" not in str(model.generate.__func__): |
|
model.generate = MethodType(PreTrainedModel.generate, model) |
|
|
|
if getattr(model.config, "model_type", None) == "chatglm": |
|
setattr(model, "lm_head", model.transformer.output_layer) |
|
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"]) |
|
|
|
if model_args.resize_vocab: |
|
_resize_embedding_layer(model, tokenizer) |
|
|
|
if is_trainable: |
|
_prepare_model_for_training(model, model_args) |
|
|
|
if getattr(model.config, "model_type", None) == "mixtral" and is_deepspeed_zero3_enabled(): |
|
require_version("deepspeed>=0.13.0", "To fix: pip install deepspeed>=0.13.0") |
|
from deepspeed.utils import set_z3_leaf_modules |
|
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock |
|
|
|
set_z3_leaf_modules(model, [MixtralSparseMoeBlock]) |
|
|
|
if is_trainable: |
|
patch_mixtral_replace_moe_impl() |
|
|
|
|
|
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead") -> None: |
|
def tie_weights(self: "AutoModelForCausalLMWithValueHead") -> None: |
|
if isinstance(self.pretrained_model, PreTrainedModel): |
|
self.pretrained_model.tie_weights() |
|
|
|
def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module: |
|
if isinstance(self.pretrained_model, PreTrainedModel): |
|
return self.pretrained_model.get_input_embeddings() |
|
|
|
ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name] |
|
setattr(model, "_keys_to_ignore_on_save", ignore_modules) |
|
setattr(model, "tie_weights", MethodType(tie_weights, model)) |
|
setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model)) |
|
|