|
import inspect |
|
from typing import TYPE_CHECKING, Any, Dict, List |
|
|
|
import torch |
|
from transformers import PreTrainedModel |
|
from transformers.utils import cached_file |
|
|
|
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME |
|
from ..extras.logging import get_logger |
|
from ..extras.misc import get_current_device |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PretrainedConfig, PreTrainedTokenizer |
|
|
|
from ..hparams import DataArguments, FinetuningArguments, ModelArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def dispatch_model(model: "PreTrainedModel") -> "PreTrainedModel": |
|
r""" |
|
Dispatches a pre-trained model to GPUs with balanced memory when the GPU is available. |
|
Borrowed from: https://github.com/huggingface/transformers/blob/v4.36.2/src/transformers/modeling_utils.py#L3570 |
|
""" |
|
if getattr(model, "quantization_method", None): |
|
return model |
|
|
|
if ( |
|
torch.cuda.device_count() > 1 |
|
and isinstance(model, PreTrainedModel) |
|
and model._no_split_modules is not None |
|
and model.config.model_type != "chatglm" |
|
): |
|
from accelerate import dispatch_model |
|
from accelerate.utils import get_balanced_memory, infer_auto_device_map |
|
|
|
kwargs = {"dtype": model.dtype, "no_split_module_classes": model._get_no_split_modules("auto")} |
|
max_memory = get_balanced_memory(model, **kwargs) |
|
|
|
model.tie_weights() |
|
device_map = infer_auto_device_map(model, max_memory=max_memory, **kwargs) |
|
device_map_kwargs = {"device_map": device_map} |
|
if "skip_keys" in inspect.signature(dispatch_model).parameters: |
|
device_map_kwargs["skip_keys"] = model._skip_keys_device_placement |
|
return dispatch_model(model, **device_map_kwargs) |
|
else: |
|
return model.to(device=get_current_device()) |
|
|
|
|
|
def find_all_linear_modules(model: "PreTrainedModel") -> List[str]: |
|
r""" |
|
Finds all available modules to apply lora. |
|
""" |
|
quantization_method = getattr(model, "quantization_method", None) |
|
if quantization_method is None: |
|
linear_cls = torch.nn.Linear |
|
elif quantization_method == "bitsandbytes": |
|
import bitsandbytes as bnb |
|
|
|
linear_cls = bnb.nn.Linear4bit if getattr(model, "is_loaded_in_4bit", False) else bnb.nn.Linear8bitLt |
|
else: |
|
raise ValueError("Finding linear modules for {} models is not supported.".format(quantization_method)) |
|
|
|
output_layer_names = ["lm_head"] |
|
if model.config.model_type == "chatglm": |
|
output_layer_names.append("output_layer") |
|
|
|
module_names = set() |
|
for name, module in model.named_modules(): |
|
if isinstance(module, linear_cls) and not any(output_layer in name for output_layer in output_layer_names): |
|
module_names.add(name.split(".")[-1]) |
|
|
|
logger.info("Found linear modules: {}".format(",".join(module_names))) |
|
return list(module_names) |
|
|
|
|
|
def get_modelcard_args( |
|
model_args: "ModelArguments", data_args: "DataArguments", finetuning_args: "FinetuningArguments" |
|
) -> Dict[str, Any]: |
|
return { |
|
"tasks": "text-generation", |
|
"license": "other", |
|
"finetuned_from": model_args.model_name_or_path, |
|
"dataset": [dataset.strip() for dataset in data_args.dataset.split(",")], |
|
"tags": ["llama-factory"] + (["lora"] if finetuning_args.finetuning_type == "lora" else []), |
|
} |
|
|
|
|
|
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]: |
|
r""" |
|
Loads value head parameters from Hugging Face Hub or local disk. |
|
|
|
Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`. |
|
""" |
|
kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token} |
|
|
|
try: |
|
from safetensors import safe_open |
|
|
|
vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs) |
|
with safe_open(vhead_file, framework="pt", device="cpu") as f: |
|
return {key: f.get_tensor(key) for key in f.keys()} |
|
except Exception as err: |
|
logger.info("Failed to load {}: {}".format(V_HEAD_SAFE_WEIGHTS_NAME, str(err))) |
|
|
|
try: |
|
vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs) |
|
return torch.load(vhead_file, map_location="cpu") |
|
except Exception as err: |
|
logger.info("Failed to load {}: {}".format(V_HEAD_WEIGHTS_NAME, str(err))) |
|
|
|
logger.info("Provided path ({}) does not contain value head weights.".format(path_or_repo_id)) |
|
logger.info("Ignore these messages if you are not resuming the training of a value head model.") |
|
return None |
|
|
|
|
|
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"): |
|
if "AutoConfig" in getattr(config, "auto_map", {}): |
|
config.__class__.register_for_auto_class() |
|
if "AutoModelForCausalLM" in getattr(config, "auto_map", {}): |
|
model.__class__.register_for_auto_class() |
|
if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}): |
|
tokenizer.__class__.register_for_auto_class() |
|
|