|
|
|
|
|
import math |
|
from typing import TYPE_CHECKING, List, Optional |
|
|
|
from torch.optim import AdamW |
|
from transformers import DataCollatorWithPadding |
|
from transformers.optimization import get_scheduler |
|
from trl import PPOConfig |
|
|
|
from ...data import get_dataset |
|
from ...extras.callbacks import FixValueHeadModelCallback |
|
from ...extras.misc import fix_valuehead_checkpoint |
|
from ...extras.ploting import plot_loss |
|
from ...model import load_model_and_tokenizer |
|
from ...train.ppo.trainer import CustomPPOTrainer |
|
from ...train.utils import create_ref_model, create_reward_model |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import Seq2SeqTrainingArguments, TrainerCallback |
|
|
|
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments |
|
|
|
|
|
def run_ppo( |
|
model_args: "ModelArguments", |
|
data_args: "DataArguments", |
|
training_args: "Seq2SeqTrainingArguments", |
|
finetuning_args: "FinetuningArguments", |
|
generating_args: "GeneratingArguments", |
|
callbacks: Optional[List["TrainerCallback"]] = None, |
|
): |
|
model, tokenizer = load_model_and_tokenizer( |
|
model_args, finetuning_args, training_args.do_train, add_valuehead=True |
|
) |
|
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="ppo") |
|
|
|
tokenizer.padding_side = "left" |
|
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) |
|
|
|
|
|
ref_model = create_ref_model(model_args, finetuning_args, add_valuehead=True) |
|
reward_model = create_reward_model(model, model_args, finetuning_args) |
|
|
|
|
|
backward_batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps |
|
ppo_config = PPOConfig( |
|
model_name=model_args.model_name_or_path, |
|
learning_rate=training_args.learning_rate, |
|
mini_batch_size=training_args.per_device_train_batch_size, |
|
batch_size=backward_batch_size * finetuning_args.ppo_buffer_size, |
|
gradient_accumulation_steps=training_args.gradient_accumulation_steps, |
|
ppo_epochs=finetuning_args.ppo_epochs, |
|
max_grad_norm=training_args.max_grad_norm, |
|
seed=training_args.seed, |
|
optimize_device_cache=True, |
|
target=finetuning_args.ppo_target, |
|
log_with=finetuning_args.ppo_logger, |
|
use_score_scaling=finetuning_args.ppo_score_norm, |
|
use_score_norm=finetuning_args.ppo_score_norm, |
|
whiten_rewards=finetuning_args.ppo_whiten_rewards, |
|
accelerator_kwargs={"step_scheduler_with_optimizer": False}, |
|
) |
|
|
|
|
|
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=training_args.learning_rate) |
|
if training_args.max_steps > 0: |
|
num_training_steps = training_args.max_steps |
|
else: |
|
total_train_batch_size = backward_batch_size * finetuning_args.ppo_buffer_size * training_args.world_size |
|
num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size) |
|
|
|
lr_scheduler = get_scheduler( |
|
training_args.lr_scheduler_type, |
|
optimizer=optimizer, |
|
num_warmup_steps=training_args.get_warmup_steps(num_training_steps), |
|
num_training_steps=num_training_steps, |
|
) |
|
|
|
|
|
ppo_trainer = CustomPPOTrainer( |
|
model_args=model_args, |
|
training_args=training_args, |
|
finetuning_args=finetuning_args, |
|
generating_args=generating_args, |
|
callbacks=callbacks + [FixValueHeadModelCallback()], |
|
reward_model=reward_model, |
|
config=ppo_config, |
|
model=model, |
|
ref_model=ref_model, |
|
tokenizer=tokenizer, |
|
dataset=dataset, |
|
data_collator=data_collator, |
|
optimizer=optimizer, |
|
lr_scheduler=lr_scheduler, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
ppo_trainer.ppo_train(resume_from_checkpoint=training_args.resume_from_checkpoint) |
|
ppo_trainer.save_model() |
|
if training_args.should_save: |
|
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors) |
|
ppo_trainer.save_state() |
|
if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss: |
|
plot_loss(training_args.output_dir, keys=["loss", "reward"]) |
|
|