|
|
|
|
|
from typing import TYPE_CHECKING, List, Optional |
|
|
|
from transformers import Seq2SeqTrainingArguments |
|
|
|
from ...data import get_dataset, split_dataset |
|
from ...extras.callbacks import FixValueHeadModelCallback |
|
from ...extras.misc import fix_valuehead_checkpoint |
|
from ...extras.ploting import plot_loss |
|
from ...model import load_model_and_tokenizer |
|
from ...train.rm.collator import PairwiseDataCollatorWithPadding |
|
from ...train.rm.metric import compute_accuracy |
|
from ...train.rm.trainer import PairwiseTrainer |
|
from ...train.utils import create_modelcard_and_push |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import TrainerCallback |
|
|
|
from ...hparams import DataArguments, FinetuningArguments, ModelArguments |
|
|
|
|
|
def run_rm( |
|
model_args: "ModelArguments", |
|
data_args: "DataArguments", |
|
training_args: "Seq2SeqTrainingArguments", |
|
finetuning_args: "FinetuningArguments", |
|
callbacks: Optional[List["TrainerCallback"]] = None, |
|
): |
|
model, tokenizer = load_model_and_tokenizer( |
|
model_args, finetuning_args, training_args.do_train, add_valuehead=True |
|
) |
|
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm") |
|
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) |
|
|
|
|
|
training_args_dict = training_args.to_dict() |
|
training_args_dict.update(dict(remove_unused_columns=False)) |
|
training_args = Seq2SeqTrainingArguments(**training_args_dict) |
|
|
|
|
|
trainer = PairwiseTrainer( |
|
model=model, |
|
args=training_args, |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
callbacks=callbacks + [FixValueHeadModelCallback()], |
|
compute_metrics=compute_accuracy, |
|
**split_dataset(dataset, data_args, training_args), |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) |
|
trainer.save_model() |
|
if training_args.should_save: |
|
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors) |
|
trainer.log_metrics("train", train_result.metrics) |
|
trainer.save_metrics("train", train_result.metrics) |
|
trainer.save_state() |
|
if trainer.is_world_process_zero() and finetuning_args.plot_loss: |
|
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) |
|
|
|
|
|
if training_args.do_eval: |
|
metrics = trainer.evaluate(metric_key_prefix="eval") |
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
if training_args.do_predict: |
|
predict_results = trainer.predict(dataset, metric_key_prefix="predict") |
|
trainer.log_metrics("predict", predict_results.metrics) |
|
trainer.save_metrics("predict", predict_results.metrics) |
|
trainer.save_predictions(predict_results) |
|
|
|
|
|
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args) |
|
|