Lorenzob's picture
Upload folder using huggingface_hub
9031f04 verified
raw
history blame
5.28 kB
from typing import TYPE_CHECKING, Optional, Union
import torch
from ..extras.logging import get_logger
from ..hparams import FinetuningArguments, ModelArguments
from ..model import get_modelcard_args, load_model_and_tokenizer, load_valuehead_params
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, Trainer
from transformers.modeling_utils import PreTrainedModel
from trl import AutoModelForCausalLMWithValueHead
from ..hparams import DataArguments
logger = get_logger(__name__)
def create_modelcard_and_push(
trainer: "Trainer",
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
) -> None:
if training_args.do_train:
if training_args.push_to_hub:
trainer.push_to_hub(**get_modelcard_args(model_args, data_args, finetuning_args))
return
try:
trainer.create_model_card(**get_modelcard_args(model_args, data_args, finetuning_args))
except Exception as err:
logger.warning("Failed to create model card: {}".format(str(err)))
def create_ref_model(
model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: Optional[bool] = False
) -> Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]:
r"""
Creates reference model for PPO/DPO training. Evaluation mode is not supported.
The valuehead parameter is randomly initialized since it is useless for PPO training.
"""
if finetuning_args.ref_model is not None:
ref_model_args_dict = model_args.to_dict()
ref_model_args_dict.update(
dict(
model_name_or_path=finetuning_args.ref_model,
adapter_name_or_path=finetuning_args.ref_model_adapters,
quantization_bit=finetuning_args.ref_model_quantization_bit,
)
)
ref_model_args = ModelArguments(**ref_model_args_dict)
ref_finetuning_args = FinetuningArguments(finetuning_type="lora")
ref_model, _ = load_model_and_tokenizer(
ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
)
logger.info("Created reference model from {}".format(finetuning_args.ref_model))
else:
if finetuning_args.finetuning_type == "lora":
ref_model = None
else:
ref_model, _ = load_model_and_tokenizer(
model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead
)
logger.info("Created reference model from the model itself.")
return ref_model
def create_reward_model(
model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments"
) -> "AutoModelForCausalLMWithValueHead":
r"""
Creates reward model for PPO training.
"""
if finetuning_args.reward_model_type == "api":
assert finetuning_args.reward_model.startswith("http"), "Please provide full url."
logger.info("Use reward server {}".format(finetuning_args.reward_model))
return finetuning_args.reward_model
elif finetuning_args.reward_model_type == "lora":
model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090
if "default" in name:
param.data = param.data.to(torch.float32) # trainable params should in fp32
vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args)
assert vhead_params is not None, "Reward model is not correctly loaded."
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
model.register_buffer(
"default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False
)
model.register_buffer(
"default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
)
logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model))
return None
else:
reward_model_args_dict = model_args.to_dict()
reward_model_args_dict.update(
dict(
model_name_or_path=finetuning_args.reward_model,
adapter_name_or_path=finetuning_args.reward_model_adapters,
quantization_bit=finetuning_args.reward_model_quantization_bit,
)
)
reward_model_args = ModelArguments(**reward_model_args_dict)
reward_finetuning_args = FinetuningArguments(finetuning_type="lora")
reward_model, _ = load_model_and_tokenizer(
reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
)
logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model))
logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
return reward_model