|
from typing import TYPE_CHECKING, Optional, Union |
|
|
|
import torch |
|
|
|
from ..extras.logging import get_logger |
|
from ..hparams import FinetuningArguments, ModelArguments |
|
from ..model import get_modelcard_args, load_model_and_tokenizer, load_valuehead_params |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import Seq2SeqTrainingArguments, Trainer |
|
from transformers.modeling_utils import PreTrainedModel |
|
from trl import AutoModelForCausalLMWithValueHead |
|
|
|
from ..hparams import DataArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def create_modelcard_and_push( |
|
trainer: "Trainer", |
|
model_args: "ModelArguments", |
|
data_args: "DataArguments", |
|
training_args: "Seq2SeqTrainingArguments", |
|
finetuning_args: "FinetuningArguments", |
|
) -> None: |
|
if training_args.do_train: |
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(**get_modelcard_args(model_args, data_args, finetuning_args)) |
|
return |
|
try: |
|
trainer.create_model_card(**get_modelcard_args(model_args, data_args, finetuning_args)) |
|
except Exception as err: |
|
logger.warning("Failed to create model card: {}".format(str(err))) |
|
|
|
|
|
def create_ref_model( |
|
model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: Optional[bool] = False |
|
) -> Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]: |
|
r""" |
|
Creates reference model for PPO/DPO training. Evaluation mode is not supported. |
|
|
|
The valuehead parameter is randomly initialized since it is useless for PPO training. |
|
""" |
|
if finetuning_args.ref_model is not None: |
|
ref_model_args_dict = model_args.to_dict() |
|
ref_model_args_dict.update( |
|
dict( |
|
model_name_or_path=finetuning_args.ref_model, |
|
adapter_name_or_path=finetuning_args.ref_model_adapters, |
|
quantization_bit=finetuning_args.ref_model_quantization_bit, |
|
) |
|
) |
|
ref_model_args = ModelArguments(**ref_model_args_dict) |
|
ref_finetuning_args = FinetuningArguments(finetuning_type="lora") |
|
ref_model, _ = load_model_and_tokenizer( |
|
ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead |
|
) |
|
logger.info("Created reference model from {}".format(finetuning_args.ref_model)) |
|
else: |
|
if finetuning_args.finetuning_type == "lora": |
|
ref_model = None |
|
else: |
|
ref_model, _ = load_model_and_tokenizer( |
|
model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead |
|
) |
|
logger.info("Created reference model from the model itself.") |
|
|
|
return ref_model |
|
|
|
|
|
def create_reward_model( |
|
model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments" |
|
) -> "AutoModelForCausalLMWithValueHead": |
|
r""" |
|
Creates reward model for PPO training. |
|
""" |
|
if finetuning_args.reward_model_type == "api": |
|
assert finetuning_args.reward_model.startswith("http"), "Please provide full url." |
|
logger.info("Use reward server {}".format(finetuning_args.reward_model)) |
|
return finetuning_args.reward_model |
|
elif finetuning_args.reward_model_type == "lora": |
|
model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward") |
|
for name, param in model.named_parameters(): |
|
if "default" in name: |
|
param.data = param.data.to(torch.float32) |
|
vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args) |
|
assert vhead_params is not None, "Reward model is not correctly loaded." |
|
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False) |
|
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False) |
|
model.register_buffer( |
|
"default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False |
|
) |
|
model.register_buffer( |
|
"default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False |
|
) |
|
logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model)) |
|
return None |
|
else: |
|
reward_model_args_dict = model_args.to_dict() |
|
reward_model_args_dict.update( |
|
dict( |
|
model_name_or_path=finetuning_args.reward_model, |
|
adapter_name_or_path=finetuning_args.reward_model_adapters, |
|
quantization_bit=finetuning_args.reward_model_quantization_bit, |
|
) |
|
) |
|
reward_model_args = ModelArguments(**reward_model_args_dict) |
|
reward_finetuning_args = FinetuningArguments(finetuning_type="lora") |
|
reward_model, _ = load_model_and_tokenizer( |
|
reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True |
|
) |
|
logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model)) |
|
logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.") |
|
return reward_model |
|
|