|
import json |
|
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, Tuple |
|
|
|
import gradio as gr |
|
from gradio.components import Component |
|
|
|
from ..chat import ChatModel |
|
from ..data import Role |
|
from ..extras.misc import torch_gc |
|
from ..hparams import GeneratingArguments |
|
from .common import get_save_dir |
|
from .locales import ALERTS |
|
|
|
|
|
if TYPE_CHECKING: |
|
from .manager import Manager |
|
|
|
|
|
class WebChatModel(ChatModel): |
|
def __init__( |
|
self, manager: "Manager", demo_mode: Optional[bool] = False, lazy_init: Optional[bool] = True |
|
) -> None: |
|
self.manager = manager |
|
self.demo_mode = demo_mode |
|
self.model = None |
|
self.tokenizer = None |
|
self.generating_args = GeneratingArguments() |
|
|
|
if not lazy_init: |
|
super().__init__() |
|
|
|
if demo_mode: |
|
import json |
|
|
|
try: |
|
with open("demo_config.json", "r", encoding="utf-8") as f: |
|
args = json.load(f) |
|
assert args.get("model_name_or_path", None) and args.get("template", None) |
|
super().__init__(args) |
|
except AssertionError: |
|
print("Please provided model name and template in `demo_config.json`.") |
|
except Exception: |
|
print("Cannot find `demo_config.json` at current directory.") |
|
|
|
@property |
|
def loaded(self) -> bool: |
|
return self.model is not None |
|
|
|
def load_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]: |
|
get = lambda name: data[self.manager.get_elem_by_name(name)] |
|
lang = get("top.lang") |
|
error = "" |
|
if self.loaded: |
|
error = ALERTS["err_exists"][lang] |
|
elif not get("top.model_name"): |
|
error = ALERTS["err_no_model"][lang] |
|
elif not get("top.model_path"): |
|
error = ALERTS["err_no_path"][lang] |
|
elif self.demo_mode: |
|
error = ALERTS["err_demo"][lang] |
|
|
|
if error: |
|
gr.Warning(error) |
|
yield error |
|
return |
|
|
|
if get("top.adapter_path"): |
|
adapter_name_or_path = ",".join( |
|
[ |
|
get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter) |
|
for adapter in get("top.adapter_path") |
|
] |
|
) |
|
else: |
|
adapter_name_or_path = None |
|
|
|
yield ALERTS["info_loading"][lang] |
|
args = dict( |
|
model_name_or_path=get("top.model_path"), |
|
adapter_name_or_path=adapter_name_or_path, |
|
finetuning_type=get("top.finetuning_type"), |
|
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, |
|
template=get("top.template"), |
|
flash_attn=(get("top.booster") == "flash_attn"), |
|
use_unsloth=(get("top.booster") == "unsloth"), |
|
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, |
|
) |
|
super().__init__(args) |
|
|
|
yield ALERTS["info_loaded"][lang] |
|
|
|
def unload_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]: |
|
lang = data[self.manager.get_elem_by_name("top.lang")] |
|
|
|
if self.demo_mode: |
|
gr.Warning(ALERTS["err_demo"][lang]) |
|
yield ALERTS["err_demo"][lang] |
|
return |
|
|
|
yield ALERTS["info_unloading"][lang] |
|
self.model = None |
|
self.tokenizer = None |
|
torch_gc() |
|
yield ALERTS["info_unloaded"][lang] |
|
|
|
def predict( |
|
self, |
|
chatbot: List[Tuple[str, str]], |
|
query: str, |
|
messages: Sequence[Tuple[str, str]], |
|
system: str, |
|
tools: str, |
|
max_new_tokens: int, |
|
top_p: float, |
|
temperature: float, |
|
) -> Generator[Tuple[Sequence[Tuple[str, str]], Sequence[Tuple[str, str]]], None, None]: |
|
chatbot.append([query, ""]) |
|
query_messages = messages + [{"role": Role.USER, "content": query}] |
|
response = "" |
|
for new_text in self.stream_chat( |
|
query_messages, system, tools, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature |
|
): |
|
response += new_text |
|
if tools: |
|
result = self.template.format_tools.extract(response) |
|
else: |
|
result = response |
|
|
|
if isinstance(result, tuple): |
|
name, arguments = result |
|
arguments = json.loads(arguments) |
|
tool_call = json.dumps({"name": name, "arguments": arguments}, ensure_ascii=False) |
|
output_messages = query_messages + [{"role": Role.FUNCTION, "content": tool_call}] |
|
bot_text = "```json\n" + tool_call + "\n```" |
|
else: |
|
output_messages = query_messages + [{"role": Role.ASSISTANT, "content": result}] |
|
bot_text = result |
|
|
|
chatbot[-1] = [query, self.postprocess(bot_text)] |
|
yield chatbot, output_messages |
|
|
|
def postprocess(self, response: str) -> str: |
|
blocks = response.split("```") |
|
for i, block in enumerate(blocks): |
|
if i % 2 == 0: |
|
blocks[i] = block.replace("<", "<").replace(">", ">") |
|
return "```".join(blocks) |
|
|