|
from typing import TYPE_CHECKING, Dict, Generator, List |
|
|
|
import gradio as gr |
|
|
|
from ...train import export_model |
|
from ..common import get_save_dir |
|
from ..locales import ALERTS |
|
|
|
|
|
if TYPE_CHECKING: |
|
from gradio.components import Component |
|
|
|
from ..engine import Engine |
|
|
|
|
|
GPTQ_BITS = ["8", "4", "3", "2"] |
|
|
|
|
|
def save_model( |
|
lang: str, |
|
model_name: str, |
|
model_path: str, |
|
adapter_path: List[str], |
|
finetuning_type: str, |
|
template: str, |
|
max_shard_size: int, |
|
export_quantization_bit: int, |
|
export_quantization_dataset: str, |
|
export_dir: str, |
|
) -> Generator[str, None, None]: |
|
error = "" |
|
if not model_name: |
|
error = ALERTS["err_no_model"][lang] |
|
elif not model_path: |
|
error = ALERTS["err_no_path"][lang] |
|
elif not export_dir: |
|
error = ALERTS["err_no_export_dir"][lang] |
|
elif export_quantization_bit in GPTQ_BITS and not export_quantization_dataset: |
|
error = ALERTS["err_no_dataset"][lang] |
|
elif export_quantization_bit not in GPTQ_BITS and not adapter_path: |
|
error = ALERTS["err_no_adapter"][lang] |
|
|
|
if error: |
|
gr.Warning(error) |
|
yield error |
|
return |
|
|
|
if adapter_path: |
|
adapter_name_or_path = ",".join( |
|
[get_save_dir(model_name, finetuning_type, adapter) for adapter in adapter_path] |
|
) |
|
else: |
|
adapter_name_or_path = None |
|
|
|
args = dict( |
|
model_name_or_path=model_path, |
|
adapter_name_or_path=adapter_name_or_path, |
|
finetuning_type=finetuning_type, |
|
template=template, |
|
export_dir=export_dir, |
|
export_size=max_shard_size, |
|
export_quantization_bit=int(export_quantization_bit) if export_quantization_bit in GPTQ_BITS else None, |
|
export_quantization_dataset=export_quantization_dataset, |
|
) |
|
|
|
yield ALERTS["info_exporting"][lang] |
|
export_model(args) |
|
yield ALERTS["info_exported"][lang] |
|
|
|
|
|
def create_export_tab(engine: "Engine") -> Dict[str, "Component"]: |
|
with gr.Row(): |
|
max_shard_size = gr.Slider(value=1, minimum=1, maximum=100) |
|
export_quantization_bit = gr.Dropdown(choices=["none", "8", "4", "3", "2"], value="none") |
|
export_quantization_dataset = gr.Textbox(value="data/c4_demo.json") |
|
|
|
export_dir = gr.Textbox() |
|
export_btn = gr.Button() |
|
info_box = gr.Textbox(show_label=False, interactive=False) |
|
|
|
export_btn.click( |
|
save_model, |
|
[ |
|
engine.manager.get_elem_by_name("top.lang"), |
|
engine.manager.get_elem_by_name("top.model_name"), |
|
engine.manager.get_elem_by_name("top.model_path"), |
|
engine.manager.get_elem_by_name("top.adapter_path"), |
|
engine.manager.get_elem_by_name("top.finetuning_type"), |
|
engine.manager.get_elem_by_name("top.template"), |
|
max_shard_size, |
|
export_quantization_bit, |
|
export_quantization_dataset, |
|
export_dir, |
|
], |
|
[info_box], |
|
) |
|
|
|
return dict( |
|
max_shard_size=max_shard_size, |
|
export_quantization_bit=export_quantization_bit, |
|
export_quantization_dataset=export_quantization_dataset, |
|
export_dir=export_dir, |
|
export_btn=export_btn, |
|
info_box=info_box, |
|
) |
|
|