|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import TYPE_CHECKING, Optional |
|
|
|
import fire |
|
import torch |
|
import torch.nn as nn |
|
from peft import LoftQConfig, LoraConfig, TaskType, get_peft_model |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedModel |
|
|
|
|
|
class Shell(nn.Module): |
|
def __init__(self, weight: torch.Tensor, bias: Optional[torch.Tensor] = None): |
|
super().__init__() |
|
self.weight = nn.Parameter(weight, requires_grad=False) |
|
if bias is not None: |
|
self.bias = nn.Parameter(bias, requires_grad=False) |
|
|
|
|
|
def unwrap_model(model: nn.Module, pattern=".base_layer") -> None: |
|
for name in set([k.split(pattern)[0] for k, _ in model.named_modules() if pattern in k]): |
|
parent_name = ".".join(name.split(".")[:-1]) |
|
child_name = name.split(".")[-1] |
|
parent_module = model.get_submodule(parent_name) |
|
child_module = getattr(parent_module, child_name) |
|
base_layer = getattr(child_module, "base_layer") |
|
weight = getattr(base_layer, "weight", None) |
|
bias = getattr(base_layer, "bias", None) |
|
setattr(parent_module, child_name, Shell(weight, bias)) |
|
|
|
print("Model unwrapped.") |
|
|
|
|
|
def quantize_loftq( |
|
model_name_or_path: str, |
|
save_dir: str, |
|
loftq_bits: Optional[int] = 4, |
|
loftq_iter: Optional[int] = 1, |
|
lora_alpha: Optional[int] = None, |
|
lora_rank: Optional[int] = 16, |
|
lora_target: Optional[str] = "q_proj,v_proj", |
|
save_safetensors: Optional[bool] = False, |
|
): |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto") |
|
loftq_config = LoftQConfig(loftq_bits=loftq_bits, loftq_iter=loftq_iter) |
|
lora_config = LoraConfig( |
|
task_type=TaskType.CAUSAL_LM, |
|
inference_mode=True, |
|
r=lora_rank, |
|
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2, |
|
lora_dropout=0.1, |
|
target_modules=[name.strip() for name in lora_target.split(",")], |
|
init_lora_weights="loftq", |
|
loftq_config=loftq_config, |
|
) |
|
|
|
|
|
lora_model = get_peft_model(model, lora_config) |
|
base_model: "PreTrainedModel" = lora_model.get_base_model() |
|
|
|
|
|
setattr(lora_model.base_model.peft_config["default"], "base_model_name_or_path", save_dir) |
|
setattr(lora_model.base_model.peft_config["default"], "init_lora_weights", True) |
|
lora_model.save_pretrained(os.path.join(save_dir, "adapters"), safe_serialization=save_safetensors) |
|
|
|
|
|
unwrap_model(base_model) |
|
base_model.save_pretrained(save_dir, safe_serialization=save_safetensors) |
|
tokenizer.save_pretrained(save_dir) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(quantize_loftq) |
|
|