|
import json |
|
import os |
|
from typing import Sequence |
|
|
|
from openai import OpenAI |
|
|
|
|
|
os.environ["OPENAI_BASE_URL"] = "http://192.168.0.1:8000/v1" |
|
os.environ["OPENAI_API_KEY"] = "0" |
|
|
|
|
|
def calculate_gpa(grades: Sequence[str], hours: Sequence[int]) -> float: |
|
grade_to_score = {"A": 4, "B": 3, "C": 2} |
|
total_score, total_hour = 0, 0 |
|
for grade, hour in zip(grades, hours): |
|
total_score += grade_to_score[grade] * hour |
|
total_hour += hour |
|
return total_score / total_hour |
|
|
|
|
|
tool_map = {"calculate_gpa": calculate_gpa} |
|
|
|
|
|
if __name__ == "__main__": |
|
client = OpenAI() |
|
tools = [ |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "calculate_gpa", |
|
"description": "Calculate the Grade Point Average (GPA) based on grades and credit hours", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"grades": {"type": "array", "items": {"type": "string"}, "description": "The grades"}, |
|
"hours": {"type": "array", "items": {"type": "integer"}, "description": "The credit hours"}, |
|
}, |
|
"required": ["grades", "hours"], |
|
}, |
|
}, |
|
} |
|
] |
|
messages = [] |
|
messages.append({"role": "user", "content": "My grades are A, A, B, and C. The credit hours are 3, 4, 3, and 2."}) |
|
result = client.chat.completions.create(messages=messages, model="test", tools=tools) |
|
tool_call = result.choices[0].message.tool_calls[0].function |
|
name, arguments = tool_call.name, json.loads(tool_call.arguments) |
|
messages.append( |
|
{"role": "function", "content": json.dumps({"name": name, "argument": arguments}, ensure_ascii=False)} |
|
) |
|
tool_result = tool_map[name](**arguments) |
|
messages.append({"role": "tool", "content": json.dumps({"gpa": tool_result}, ensure_ascii=False)}) |
|
result = client.chat.completions.create(messages=messages, model="test", tools=tools) |
|
print(result.choices[0].message.content) |
|
|
|
|