// Copyright (c) 2016 Ryan Prichard | |
// | |
// Permission is hereby granted, free of charge, to any person obtaining a copy | |
// of this software and associated documentation files (the "Software"), to | |
// deal in the Software without restriction, including without limitation the | |
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | |
// sell copies of the Software, and to permit persons to whom the Software is | |
// furnished to do so, subject to the following conditions: | |
// | |
// The above copyright notice and this permission notice shall be included in | |
// all copies or substantial portions of the Software. | |
// | |
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | |
// IN THE SOFTWARE. | |
static volatile LONG g_pipeCounter; | |
GenRandom::GenRandom() : m_advapi32(L"advapi32.dll") { | |
// First try to use the pseudo-documented RtlGenRandom function from | |
// advapi32.dll. Creating a CryptoAPI context is slow, and RtlGenRandom | |
// avoids the overhead. It's documented in this blog post[1] and on | |
// MSDN[2] with a disclaimer about future breakage. This technique is | |
// apparently built-in into the MSVC CRT, though, for the rand_s function, | |
// so perhaps it is stable enough. | |
// | |
// [1] http://blogs.msdn.com/b/michael_howard/archive/2005/01/14/353379.aspx | |
// [2] https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694(v=vs.85).aspx | |
// | |
// Both RtlGenRandom and the Crypto API functions exist in XP and up. | |
m_rtlGenRandom = reinterpret_cast<RtlGenRandom_t*>( | |
m_advapi32.proc("SystemFunction036")); | |
// The OsModule class logs an error message if the proc is nullptr. | |
if (m_rtlGenRandom != nullptr) { | |
return; | |
} | |
// Fall back to the crypto API. | |
m_cryptProvIsValid = | |
CryptAcquireContext(&m_cryptProv, nullptr, nullptr, | |
PROV_RSA_FULL, CRYPT_VERIFYCONTEXT) != 0; | |
if (!m_cryptProvIsValid) { | |
trace("GenRandom: CryptAcquireContext failed: %u", | |
static_cast<unsigned>(GetLastError())); | |
} | |
} | |
GenRandom::~GenRandom() { | |
if (m_cryptProvIsValid) { | |
CryptReleaseContext(m_cryptProv, 0); | |
} | |
} | |
// Returns false if the context is invalid or the generation fails. | |
bool GenRandom::fillBuffer(void *buffer, size_t size) { | |
memset(buffer, 0, size); | |
bool success = false; | |
if (m_rtlGenRandom != nullptr) { | |
success = m_rtlGenRandom(buffer, size) != 0; | |
if (!success) { | |
trace("GenRandom: RtlGenRandom/SystemFunction036 failed: %u", | |
static_cast<unsigned>(GetLastError())); | |
} | |
} else if (m_cryptProvIsValid) { | |
success = | |
CryptGenRandom(m_cryptProv, size, | |
reinterpret_cast<BYTE*>(buffer)) != 0; | |
if (!success) { | |
trace("GenRandom: CryptGenRandom failed, size=%d, lasterror=%u", | |
static_cast<int>(size), | |
static_cast<unsigned>(GetLastError())); | |
} | |
} | |
return success; | |
} | |
// Returns an empty string if either of CryptAcquireContext or CryptGenRandom | |
// fail. | |
std::string GenRandom::randomBytes(size_t numBytes) { | |
std::string ret(numBytes, '\0'); | |
if (!fillBuffer(&ret[0], numBytes)) { | |
return std::string(); | |
} | |
return ret; | |
} | |
std::wstring GenRandom::randomHexString(size_t numBytes) { | |
const std::string bytes = randomBytes(numBytes); | |
std::wstring ret(bytes.size() * 2, L'\0'); | |
for (size_t i = 0; i < bytes.size(); ++i) { | |
static const wchar_t hex[] = L"0123456789abcdef"; | |
ret[i * 2] = hex[static_cast<uint8_t>(bytes[i]) >> 4]; | |
ret[i * 2 + 1] = hex[static_cast<uint8_t>(bytes[i]) & 0xF]; | |
} | |
return ret; | |
} | |
// Returns a 64-bit value representing the number of 100-nanosecond intervals | |
// since January 1, 1601. | |
static uint64_t systemTimeAsUInt64() { | |
FILETIME monotonicTime = {}; | |
GetSystemTimeAsFileTime(&monotonicTime); | |
return (static_cast<uint64_t>(monotonicTime.dwHighDateTime) << 32) | | |
static_cast<uint64_t>(monotonicTime.dwLowDateTime); | |
} | |
// Generates a unique and hard-to-guess case-insensitive string suitable for | |
// use in a pipe filename or a Windows object name. | |
std::wstring GenRandom::uniqueName() { | |
// First include enough information to avoid collisions assuming | |
// cooperative software. This code assumes that a process won't die and | |
// be replaced with a recycled PID within a single GetSystemTimeAsFileTime | |
// interval. | |
WStringBuilder sb(64); | |
sb << GetCurrentProcessId() | |
<< L'-' << InterlockedIncrement(&g_pipeCounter) | |
<< L'-' << whexOfInt(systemTimeAsUInt64()); | |
// It isn't clear to me how the crypto APIs would fail. It *probably* | |
// doesn't matter that much anyway? In principle, a predictable pipe name | |
// is subject to a local denial-of-service attack. | |
auto random = randomHexString(16); | |
if (!random.empty()) { | |
sb << L'-' << random; | |
} | |
return sb.str_moved(); | |
} | |