import math from typing import Optional, Tuple import torch import torch.nn as nn from transformers.models.llama.modeling_llama import ( Cache, LlamaAttention, LlamaFlashAttention2, apply_rotary_pos_emb, repeat_kv, ) from transformers.utils import logging logger = logging.get_logger(__name__) # Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py def llama_torch_attn_forward( self: "LlamaAttention", hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional["Cache"] = None, output_attentions: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if getattr(self.config, "group_size_ratio", None) and self.training: # shift groupsz = int(q_len * getattr(self.config, "group_size_ratio")) assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) num_groups = q_len // groupsz def shift(state: torch.Tensor) -> torch.Tensor: state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim) state = torch.cat( (state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), dim=2, ) return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2) query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) if attention_mask is not None: attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz*n_group, :, groupsz, :) attn_output = attn_output.transpose(1, 2).contiguous() if getattr(self.config, "group_size_ratio", None) and self.training: # shift back attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) attn_output = torch.cat( ( attn_output[:, :, : self.num_heads // 2], attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), ) ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py def llama_flash_attn_forward( self: "LlamaFlashAttention2", hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # LlamaFlashAttention2 attention does not support output_attentions output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) query_states = query_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim) key_states = key_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim) value_states = value_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim) dropout_rate = self.attention_dropout if self.training else 0.0 input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once("The input hidden states seems to be silently casted in float32.") query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) if getattr(self.config, "group_size_ratio", None) and self.training: # shift groupsz = int(q_len * getattr(self.config, "group_size_ratio")) assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) num_groups = q_len // groupsz def shift(state: torch.Tensor) -> torch.Tensor: state = torch.cat( (state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), dim=2, ) return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim) query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) if attention_mask is not None: attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1) attn_output: torch.Tensor = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate ) if getattr(self.config, "group_size_ratio", None) and self.training: # shift back attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) attn_output = torch.cat( ( attn_output[:, :, : self.num_heads // 2], attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), ) ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def apply_llama_patch() -> None: LlamaAttention.forward = llama_torch_attn_forward LlamaFlashAttention2.forward = llama_flash_attn_forward