import torch import torch.nn.functional as F from transformers.models.mixtral.modeling_mixtral import MixtralBLockSparseTop2MLP, MixtralSparseMoeBlock def mlp_forward(self: "MixtralBLockSparseTop2MLP", hidden_states: torch.Tensor) -> torch.Tensor: current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) current_hidden_states = self.w2(current_hidden_states) return current_hidden_states # Modified from: https://huggingface.co/deepseek-ai/deepseek-moe-16b-base/blob/main/modeling_deepseek.py def moe_forward(self: "MixtralSparseMoeBlock", hidden_states: torch.Tensor) -> torch.Tensor: batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False) topk_weight /= topk_weight.sum(dim=-1, keepdim=True) # we cast back to the input dtype topk_weight = topk_weight.to(hidden_states.dtype) hidden_states = hidden_states.repeat_interleave(self.top_k, dim=0) y = torch.empty_like(hidden_states) flat_topk_idx = topk_idx.view(-1) for i in range(self.num_experts): expert = self.experts[i] y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) final_hidden_states = y.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, router_logits def patch_mixtral_replace_moe_impl() -> None: MixtralBLockSparseTop2MLP.forward = mlp_forward MixtralSparseMoeBlock.forward = moe_forward