# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py from typing import TYPE_CHECKING, List, Optional from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments from ...data import get_dataset, split_dataset from ...extras.constants import IGNORE_INDEX from ...extras.misc import get_logits_processor from ...extras.ploting import plot_loss from ...model import load_model_and_tokenizer from ...train.sft.metric import ComputeMetrics from ...train.sft.trainer import CustomSeq2SeqTrainer from ...train.utils import create_modelcard_and_push if TYPE_CHECKING: from transformers import TrainerCallback from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments def run_sft( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", generating_args: "GeneratingArguments", callbacks: Optional[List["TrainerCallback"]] = None, ): model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train) dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft") if training_args.predict_with_generate: tokenizer.padding_side = "left" # use left-padding in generation if getattr(model, "is_quantized", False) and not training_args.do_train: setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction data_collator = DataCollatorForSeq2Seq( tokenizer=tokenizer, pad_to_multiple_of=8 if tokenizer.padding_side == "right" else None, # for shift short attention label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id, ) # Override the decoding parameters of Seq2SeqTrainer training_args_dict = training_args.to_dict() training_args_dict.update( dict( generation_max_length=training_args.generation_max_length or data_args.cutoff_len, generation_num_beams=data_args.eval_num_beams or training_args.generation_num_beams, ) ) training_args = Seq2SeqTrainingArguments(**training_args_dict) # Initialize our Trainer trainer = CustomSeq2SeqTrainer( model=model, args=training_args, tokenizer=tokenizer, data_collator=data_collator, callbacks=callbacks, compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None, **split_dataset(dataset, data_args, training_args), ) # Keyword arguments for `model.generate` gen_kwargs = generating_args.to_dict() gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids gen_kwargs["pad_token_id"] = tokenizer.pad_token_id gen_kwargs["logits_processor"] = get_logits_processor() # Training if training_args.do_train: train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() if trainer.is_world_process_zero() and finetuning_args.plot_loss: plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs) if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled metrics.pop("eval_loss", None) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Predict if training_args.do_predict: predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs) if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled predict_results.metrics.pop("predict_loss", None) trainer.log_metrics("predict", predict_results.metrics) trainer.save_metrics("predict", predict_results.metrics) trainer.save_predictions(predict_results) # Create model card create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)