V2
Browse files- README.md +4 -4
- config.json +1 -1
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
@@ -16,13 +16,13 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
-
# **
|
25 |
-
This is a trained model of a **
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
+
- name: ppo
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 284.54 +/- 15.48
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **ppo** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **ppo** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2184641b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2184641c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2184641ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2184641d30>", "_build": "<function ActorCriticPolicy._build at 0x7f2184641dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2184641e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2184641ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2184641f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2184645040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21846450d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2184645160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f218463d9c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670503468466855551, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABo5Er32lGu68i3CujPDSbS/S7m67brgOQAAgD8AAIA/GvUQvcNVELq6epY3z/p6tP+ChbtrmbC2AACAPwAAgD8zkGA+1+koP2LdXr1rjNG+cDdxPXqIJL0AAAAAAAAAAM2nrjxcV366r9knOT5mIzQqfO86qjJEuAAAgD8AAIA/AB41PFyTLboLqOE6D7KLNZ3TZrpLcgC6AACAPwAAgD/NuJk7hePTuWe1kzu3OR02yrVZOpUnq7oAAIA/AACAPzPbcryF6925DbY1un7Xa7Uuqxs7LedSOQAAgD8AAIA/MzbEPUStPj7eV187Kxk7vkkefTufW8S7AAAAAAAAAADmsV0+pBKoPs/QD751roC+FgALPPkZQ70AAAAAAAAAADPp9Ty5lVM/g73PvJpkwL4mP+c8+BDcvAAAAAAAAAAATZ4LPeEgl7oq1mu7d6fGM+XgOboPRog6AACAPwAAgD+tT1C+/HuVP7sV3r6OJdW+jt6Evuh8Cr4AAAAAAAAAAOZm2z0fHem5FsEVOJr9fjFMlwa6BV8xtwAAgD8AAIA/5qtEvRQ0oLp37Qg5gC8CNMsOsziWlx24AACAPwAAgD/NV568KcxfukOPrDmwrYQ2OZ0yO19rxrgAAIA/AACAP0B+rD32aGG6OLviuZGEhDScDCM7kgziswAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRdeFHxwnZECUhpRSlIwBbJRN6AOMAXSUR0CVBPCK77KrdX2UKGgGaAloD0MIUvLqHAOYYECUhpRSlGgVTegDaBZHQJUIu/TLGJh1fZQoaAZoCWgPQwholgSoKRBmQJSGlFKUaBVN6ANoFkdAlQm1Bt1p03V9lChoBmgJaA9DCBgJbTmXjWVAlIaUUpRoFU3oA2gWR0CVCucAR02cdX2UKGgGaAloD0MInu3RG+7rY0CUhpRSlGgVTegDaBZHQJUOL3Fkxyp1fZQoaAZoCWgPQwjVdhN8UyBjQJSGlFKUaBVN6ANoFkdAlRVisGPgenV9lChoBmgJaA9DCHF2a5kMOGdAlIaUUpRoFU3oA2gWR0CVF4hxHXmOdX2UKGgGaAloD0MIskgT7wBNX0CUhpRSlGgVTegDaBZHQJUZECOmzjZ1fZQoaAZoCWgPQwjMejGUk49hQJSGlFKUaBVN6ANoFkdAlRpk9lmOEXV9lChoBmgJaA9DCEpgcw6e6mVAlIaUUpRoFU3oA2gWR0CVI5FWXC0odX2UKGgGaAloD0MITMEaZ1OSY0CUhpRSlGgVTegDaBZHQJUndWzWwvB1fZQoaAZoCWgPQwhiLxSwnbRlQJSGlFKUaBVN6ANoFkdAlTAkVrRBvHV9lChoBmgJaA9DCKFoHsAiHmBAlIaUUpRoFU3oA2gWR0CVN6QC0WuYdX2UKGgGaAloD0MIX+/+eK/vYkCUhpRSlGgVTegDaBZHQJU6Csny/bl1fZQoaAZoCWgPQwhAwjBgyYxjQJSGlFKUaBVN6ANoFkdAlU9iFPBSDXV9lChoBmgJaA9DCK2h1F5EXF1AlIaUUpRoFU3oA2gWR0CVU8SKm8/VdX2UKGgGaAloD0MIg/xs5Dr4YUCUhpRSlGgVTegDaBZHQJVZmUILPUt1fZQoaAZoCWgPQwjM7PMYZVNkQJSGlFKUaBVN6ANoFkdAlV0oRywOfHV9lChoBmgJaA9DCOyGbYuyi2FAlIaUUpRoFU3oA2gWR0CVXgwW3z+WdX2UKGgGaAloD0MIMX2vIThZYUCUhpRSlGgVTegDaBZHQJVfMESuhbp1fZQoaAZoCWgPQwhXBtUGp6tiQJSGlFKUaBVN6ANoFkdAlWJ1VktmMHV9lChoBmgJaA9DCKqezD/6BjBAlIaUUpRoFU0GAWgWR0CVaJwDvE0jdX2UKGgGaAloD0MIN4lBYGWYYkCUhpRSlGgVTegDaBZHQJVpIRHww0x1fZQoaAZoCWgPQwjnNXaJanFkQJSGlFKUaBVN6ANoFkdAlWqv114gR3V9lChoBmgJaA9DCAsMWd3qhWJAlIaUUpRoFU3oA2gWR0CVbB2aUiY+dX2UKGgGaAloD0MI1jcwuVEtZECUhpRSlGgVTegDaBZHQJVtPbfxc3V1fZQoaAZoCWgPQwirWWd8X8JfQJSGlFKUaBVN6ANoFkdAlXNdcGC7LHV9lChoBmgJaA9DCLQfKSJDY2NAlIaUUpRoFU3oA2gWR0CVdeAcT8HfdX2UKGgGaAloD0MIM0+uKZBuY0CUhpRSlGgVTegDaBZHQJV+GptJnQJ1fZQoaAZoCWgPQwjNeFvpNWdnQJSGlFKUaBVN6ANoFkdAlYYbTQVsUXV9lChoBmgJaA9DCGEW2jnNjGNAlIaUUpRoFU3oA2gWR0CViJtHxz7udX2UKGgGaAloD0MISWdg5OVkYECUhpRSlGgVTegDaBZHQJWLGlTFVDN1fZQoaAZoCWgPQwgPKQZINH1lQJSGlFKUaBVN6ANoFkdAlaLgpe/pMnV9lChoBmgJaA9DCGTo2EGlmGFAlIaUUpRoFU3oA2gWR0CVrcIacZtOdX2UKGgGaAloD0MIWrvtQnPRYkCUhpRSlGgVTegDaBZHQJWur5hz/6x1fZQoaAZoCWgPQwidu10vTbdkQJSGlFKUaBVN6ANoFkdAla/JJkGzKXV9lChoBmgJaA9DCLM/UG5bxWVAlIaUUpRoFU3oA2gWR0CVswpHqeK9dX2UKGgGaAloD0MICAYQPpT0WECUhpRSlGgVTegDaBZHQJW5M8wHqu91fZQoaAZoCWgPQwgfTfVkfiJiQJSGlFKUaBVN6ANoFkdAlbmt0aIeo3V9lChoBmgJaA9DCL+YLVmVT2BAlIaUUpRoFU3oA2gWR0CVuzcD8tPIdX2UKGgGaAloD0MI04OCUjTpZECUhpRSlGgVTegDaBZHQJW8hxCIDYB1fZQoaAZoCWgPQwiPb+8a9FhkQJSGlFKUaBVN6ANoFkdAlb2LM1TBInV9lChoBmgJaA9DCC8UsB2MamFAlIaUUpRoFU3oA2gWR0CVw8y5I6KcdX2UKGgGaAloD0MIYMrAAa38Y0CUhpRSlGgVTegDaBZHQJXGeYZ2pyZ1fZQoaAZoCWgPQwhYHqSnyJhRQJSGlFKUaBVLv2gWR0CVyCRw6ySndX2UKGgGaAloD0MI0Vj7O9vCY0CUhpRSlGgVTegDaBZHQJXOl8PWhAZ1fZQoaAZoCWgPQwhS8uocA7VkQJSGlFKUaBVN6ANoFkdAldc52U0N0HV9lChoBmgJaA9DCNQNFHinP2dAlIaUUpRoFU3oA2gWR0CV3Td4FA3UdX2UKGgGaAloD0MIeQPMfIerYUCUhpRSlGgVTegDaBZHQJXgroW56MR1fZQoaAZoCWgPQwiVRszs88deQJSGlFKUaBVN6ANoFkdAlgj2ACnxa3V9lChoBmgJaA9DCBmp91ROeWNAlIaUUpRoFU3oA2gWR0CWFIpZwGW2dX2UKGgGaAloD0MIt7JEZ5m2YUCUhpRSlGgVTegDaBZHQJYVcjmjj711fZQoaAZoCWgPQwg3ww34fLJkQJSGlFKUaBVN6ANoFkdAlhabYf4h2XV9lChoBmgJaA9DCIQR+wTQOWRAlIaUUpRoFU3oA2gWR0CWGgPN3W4FdX2UKGgGaAloD0MIdXKG4o5iZECUhpRSlGgVTegDaBZHQJYgeTvAoG91fZQoaAZoCWgPQwgSonxBi09hQJSGlFKUaBVN6ANoFkdAliD75dnkDXV9lChoBmgJaA9DCKX4+IRsSWZAlIaUUpRoFU3oA2gWR0CWIpiWE9McdX2UKGgGaAloD0MIq1rSUQ7gYECUhpRSlGgVTegDaBZHQJYkBUYKpkx1fZQoaAZoCWgPQwjAXIsWIGpkQJSGlFKUaBVN6ANoFkdAli1MzMzMzXV9lChoBmgJaA9DCH/bEyS2CGdAlIaUUpRoFU3oA2gWR0CWMRJZW7vodX2UKGgGaAloD0MIt9WsM75jYkCUhpRSlGgVTegDaBZHQJYzf7wazeJ1fZQoaAZoCWgPQwjyXyAIkDdjQJSGlFKUaBVN6ANoFkdAljqsrmQr+nV9lChoBmgJaA9DCP5l9+RhxmNAlIaUUpRoFU3oA2gWR0CWQlEFnqVydX2UKGgGaAloD0MIwylz8w1BZECUhpRSlGgVTegDaBZHQJZEjnuAqd91fZQoaAZoCWgPQwjtLHqngmZjQJSGlFKUaBVN6ANoFkdAlkbnm3fAK3V9lChoBmgJaA9DCMGnOXkRkWFAlIaUUpRoFU3oA2gWR0CWXfrf+CK8dX2UKGgGaAloD0MIFLAdjNhpYkCUhpRSlGgVTegDaBZHQJZppUtI0651fZQoaAZoCWgPQwi1NSIYhx5hQJSGlFKUaBVN6ANoFkdAlmqWhmGucXV9lChoBmgJaA9DCM/5KY6D2WBAlIaUUpRoFU3oA2gWR0CWa9RmseXBdX2UKGgGaAloD0MICcA/pcpxZECUhpRSlGgVTegDaBZHQJZvnmHP/rB1fZQoaAZoCWgPQwhUyQBQRVBhQJSGlFKUaBVN6ANoFkdAlnbgwwj+rHV9lChoBmgJaA9DCDtvY7MjYmJAlIaUUpRoFU3oA2gWR0CWd2hS9/SZdX2UKGgGaAloD0MIVYZxNwjvYkCUhpRSlGgVTegDaBZHQJZ46lfqoqF1fZQoaAZoCWgPQwgAOsyXl+FgQJSGlFKUaBVN6ANoFkdAlnpEJF9a2XV9lChoBmgJaA9DCHJqZ5havGVAlIaUUpRoFU3oA2gWR0CWg22qkuYhdX2UKGgGaAloD0MIoMGmziMjbkCUhpRSlGgVTaQBaBZHQJaFtm4Ajpt1fZQoaAZoCWgPQwj2JLA5hzNmQJSGlFKUaBVN6ANoFkdAlobrs8gZCXV9lChoBmgJaA9DCAcj9gmgRWJAlIaUUpRoFU3oA2gWR0CWiOyDIzWPdX2UKGgGaAloD0MIbcZpiCoHX0CUhpRSlGgVTegDaBZHQJaQoQ2/BWR1fZQoaAZoCWgPQwjw/Q3aK2tkQJSGlFKUaBVN6ANoFkdAlprJ+QU5/HV9lChoBmgJaA9DCNBhvryAzGFAlIaUUpRoFU3oA2gWR0CWnS5wwTM8dX2UKGgGaAloD0MIRBX+DO96ZECUhpRSlGgVTegDaBZHQJafWLjxTbZ1fZQoaAZoCWgPQwjghEIEHLJwQJSGlFKUaBVNwQJoFkdAlqEOR9w3pHV9lChoBmgJaA9DCGZNLPAVRGJAlIaUUpRoFU3oA2gWR0CWoy3sHB1tdX2UKGgGaAloD0MIYfw07s0tZkCUhpRSlGgVTegDaBZHQJbCE04zabp1fZQoaAZoCWgPQwgcJhqk4MFgQJSGlFKUaBVN6ANoFkdAlsSP+85CGHV9lChoBmgJaA9DCNhJfVnakF9AlIaUUpRoFU3oA2gWR0CWztFX7tRfdX2UKGgGaAloD0MI/5QqUXZ7ZECUhpRSlGgVTegDaBZHQJbPXW+XZ5B1fZQoaAZoCWgPQwjzqzlAMKtgQJSGlFKUaBVN6ANoFkdAltEoTGo73nV9lChoBmgJaA9DCPw2xHjNn2JAlIaUUpRoFU3oA2gWR0CW0r7OE/SqdX2UKGgGaAloD0MIcZF7urr6XUCUhpRSlGgVTegDaBZHQJbdC912aDx1fZQoaAZoCWgPQwgO12oP++JiQJSGlFKUaBVN6ANoFkdAlt8fxpcopnV9lChoBmgJaA9DCOc0C7Q73V5AlIaUUpRoFU3oA2gWR0CW39EKVpsXdX2UKGgGaAloD0MIke18P7XZY0CUhpRSlGgVTegDaBZHQJbhchr30wt1fZQoaAZoCWgPQwhuisdFNZJgQJSGlFKUaBVN6ANoFkdAlud91loUSXV9lChoBmgJaA9DCNIZGHlZ32BAlIaUUpRoFU3oA2gWR0CW7gT4+KTCdX2UKGgGaAloD0MITb9EvHWRYkCUhpRSlGgVTegDaBZHQJbwFvDP4VR1fZQoaAZoCWgPQwjT9NkB14tkQJSGlFKUaBVN6ANoFkdAlvJY1UEPlXV9lChoBmgJaA9DCJLqO78oXF9AlIaUUpRoFU3oA2gWR0CW8+t2cJ+ldX2UKGgGaAloD0MIWwpI+x87ZkCUhpRSlGgVTegDaBZHQJb2TWWhRIl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7711f31c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7711f31ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7711f31d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7711f31dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f7711f31e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f7711f31ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7711f31f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7711f35040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7711f350d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7711f35160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7711f351f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7711f35280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7711f2c900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676647170772203249, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYYTjzD2WS6+HMItU9DjrBS76Q6tidzNAAAgD8AAIA/jnWYvvqPPj8qud+92Z44v+ON8r4/L5s8AAAAAAAAAADaNvU9PPJEP7Pdpjt+6Ry/L9A+PmbTeb0AAAAAAAAAAID6Gb1I7eq8ypKWOvBFpDu6k6a87qjfvAAAgD8AAIA/zZCJPSlsNbpIf4q51ewMtTnYnTtZ96A4AACAPwAAAADmtyA9HLgLPcczIr6Qh9W+YO2HvTfhKL0AAAAAAAAAAGYNrrwKf0C7ICsjvHpAjDyNxpU8XpZxvQAAgD8AAIA/8wmFvTXBCj/mVaG7sdQJv6B1nr0il8s8AAAAAAAAAACTKW0+uxIbP/KYL71vxgK/T0vAPmgd9r0AAAAAAAAAALPSE70UCLq6OPjXOyASnzle/PU5is6WuQAAgD8AAIA/mqmIPQsIuz0qcQe++VTVvutMab2VXfa8AAAAAAAAAABmhvq8VP23vI7XML0Q3RK+tZ4BPlEVJz8AAIA/AACAP836DLw9by27Y3F2Pql6gL7bSeM9/jUbvwAAAAAAAIA/zZYPvUUBID7KDyc+Ih7DvvhYDz092NI9AAAAAAAAAAAA2ka80j/quz6GgrzwOG08pOlfPbDOSL0AAIA/AACAPwAw5LvXMEW7hIsOO8pBdzzgSpm8nWlWPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcmw9Q/jocUCUhpRSlIwBbJRLyowBdJRHQK1eoIw/PgN1fZQoaAZoCWgPQwi309aIYCNzQJSGlFKUaBVL1GgWR0CtXv0BwMpgdX2UKGgGaAloD0MIZd8Vwb8GckCUhpRSlGgVS7BoFkdArV9YPiDM/3V9lChoBmgJaA9DCG8QrRVt2HJAlIaUUpRoFUvYaBZHQK1fX4Uvf0p1fZQoaAZoCWgPQwgHswkwrF5xQJSGlFKUaBVLsGgWR0CtX3GUGFBZdX2UKGgGaAloD0MIWBtjJ7ypcUCUhpRSlGgVS7ZoFkdArV+JyEL6UXV9lChoBmgJaA9DCHP2zmirmFBAlIaUUpRoFUuBaBZHQK1fk+7Dl5p1fZQoaAZoCWgPQwgtsTIa+YZyQJSGlFKUaBVLsmgWR0CtX6H3ta6jdX2UKGgGaAloD0MIU9DtJQ1uc0CUhpRSlGgVS8JoFkdArV+juKGcnXV9lChoBmgJaA9DCNTX8zXLmnNAlIaUUpRoFUvEaBZHQK1ftSThYNl1fZQoaAZoCWgPQwjGppVCIGFyQJSGlFKUaBVLpWgWR0CtX9hmGucMdX2UKGgGaAloD0MIJGB0efO+c0CUhpRSlGgVS8doFkdArV/qsCDEnHV9lChoBmgJaA9DCNHP1OtWU3NAlIaUUpRoFUvGaBZHQK1f+scQyyl1fZQoaAZoCWgPQwicxCCw8vBwQJSGlFKUaBVLvmgWR0CtYAm65Gz9dX2UKGgGaAloD0MIsrj/yDTbcUCUhpRSlGgVS8hoFkdArWAPRkVer3V9lChoBmgJaA9DCIQOuoRDzXFAlIaUUpRoFUuuaBZHQK1gGEDhcZ91fZQoaAZoCWgPQwgyyjMvBwlzQJSGlFKUaBVL4WgWR0CtYI11GLDRdX2UKGgGaAloD0MIYTdsW1TtckCUhpRSlGgVS85oFkdArWDHrMTviXV9lChoBmgJaA9DCKmj42ok2HFAlIaUUpRoFUuzaBZHQK1g6hB7eEZ1fZQoaAZoCWgPQwhbXyS05cluQJSGlFKUaBVLumgWR0CtYPRlHz6KdX2UKGgGaAloD0MIatyb37BHc0CUhpRSlGgVS7loFkdArWqj28IzFnV9lChoBmgJaA9DCGCt2jWh+3BAlIaUUpRoFUvNaBZHQK1qouvllsh1fZQoaAZoCWgPQwjudygKtMBxQJSGlFKUaBVLwmgWR0CtaqEORT0hdX2UKGgGaAloD0MIOKClK1j5cUCUhpRSlGgVS8BoFkdArWq0+aBqbnV9lChoBmgJaA9DCMK9Mm+VUXJAlIaUUpRoFUvOaBZHQK1qyJ1q33J1fZQoaAZoCWgPQwi7D0BqE2RxQJSGlFKUaBVLtmgWR0Ctatjh99c9dX2UKGgGaAloD0MI2bRSCKRAckCUhpRSlGgVS9BoFkdArWrrOs1baHV9lChoBmgJaA9DCD/G3LVEEnFAlIaUUpRoFUu6aBZHQK1q8fJ3gUF1fZQoaAZoCWgPQwgm4xjJ3vJyQJSGlFKUaBVLrmgWR0CtawUh3aBadX2UKGgGaAloD0MIxHx5AfavcECUhpRSlGgVS71oFkdArWsUrTYukHV9lChoBmgJaA9DCAAbECGuBnFAlIaUUpRoFUvQaBZHQK1rLDb8FZB1fZQoaAZoCWgPQwgW+fVDLCtyQJSGlFKUaBVLzmgWR0Cta0MLfDUFdX2UKGgGaAloD0MI7e9sj96bbkCUhpRSlGgVS8BoFkdArWvWj9GZu3V9lChoBmgJaA9DCM5wAz4/q3BAlIaUUpRoFUu5aBZHQK1sQe+23KB1fZQoaAZoCWgPQwhwXMZNDZ50QJSGlFKUaBVLuWgWR0CtbE8/MW43dX2UKGgGaAloD0MIV0Chnj50cECUhpRSlGgVS9FoFkdArWxhRKpT/HV9lChoBmgJaA9DCKoKDcQyVHFAlIaUUpRoFUu8aBZHQK1st5VwPy11fZQoaAZoCWgPQwh319mQP+VwQJSGlFKUaBVLvmgWR0CtbMJ0GNaRdX2UKGgGaAloD0MIPGwiM9d3cECUhpRSlGgVS7doFkdArWzkvM8oyHV9lChoBmgJaA9DCOV7RiI05HBAlIaUUpRoFUvJaBZHQK1s7NQj2SN1fZQoaAZoCWgPQwjk3CbcK05wQJSGlFKUaBVL0GgWR0CtbVFv60pmdX2UKGgGaAloD0MI740hALjqckCUhpRSlGgVS8hoFkdArW1fVG0/nnV9lChoBmgJaA9DCBiZgF+jx3FAlIaUUpRoFUvoaBZHQK1tcfxMFll1fZQoaAZoCWgPQwiEfxE05ihzQJSGlFKUaBVLyWgWR0CtbYMIeHSGdX2UKGgGaAloD0MIKhprfycqdECUhpRSlGgVS+NoFkdArW2p04iosXV9lChoBmgJaA9DCHI3iNZKuHNAlIaUUpRoFUu+aBZHQK1tsbADaGp1fZQoaAZoCWgPQwh39pUHKdlzQJSGlFKUaBVL0WgWR0CtbbHjQzDXdX2UKGgGaAloD0MIJNV3fpGhckCUhpRSlGgVS9loFkdArW3nseGO/HV9lChoBmgJaA9DCEsEqn9Q43JAlIaUUpRoFUvNaBZHQK1uaS5AhSt1fZQoaAZoCWgPQwj2tpkKschxQJSGlFKUaBVLsWgWR0CtboEjopx4dX2UKGgGaAloD0MIB3k9mNSmcUCUhpRSlGgVS8FoFkdArW7JfShJy3V9lChoBmgJaA9DCHOBy2MNTHBAlIaUUpRoFUvUaBZHQK1u6ifQKKJ1fZQoaAZoCWgPQwiyRj1Eo89xQJSGlFKUaBVLwGgWR0CtbyRX4j8ldX2UKGgGaAloD0MIBMqmXCHXc0CUhpRSlGgVS8xoFkdArW9ZAB1cMXV9lChoBmgJaA9DCCrj32fcfXJAlIaUUpRoFUvMaBZHQK1vfVtoBaN1fZQoaAZoCWgPQwgMW7OVl1BzQJSGlFKUaBVL5GgWR0Ctb83HBDXwdX2UKGgGaAloD0MINSkF3V4Xb0CUhpRSlGgVS8loFkdArW/iWqtHQXV9lChoBmgJaA9DCHBDjNc8XHFAlIaUUpRoFUu0aBZHQK1wDGWD6Fd1fZQoaAZoCWgPQwj1uG+1TulxQJSGlFKUaBVLyGgWR0CtcBk5ZKWcdX2UKGgGaAloD0MIak5eZIJ/ckCUhpRSlGgVS7toFkdArXAcGcFyJnV9lChoBmgJaA9DCCdMGM3KoHJAlIaUUpRoFUvUaBZHQK1wL8m8dxR1fZQoaAZoCWgPQwhLkBFQ4VVxQJSGlFKUaBVL3mgWR0CtcD9gWrOrdX2UKGgGaAloD0MIGw5LA//6c0CUhpRSlGgVS8ZoFkdArXBJu0kWynV9lChoBmgJaA9DCNxHbk06GHNAlIaUUpRoFUvOaBZHQK1wngWJrL11fZQoaAZoCWgPQwjOUNzx5lZxQJSGlFKUaBVLy2gWR0CtcTAXdj5LdX2UKGgGaAloD0MIQdMSK2O9ckCUhpRSlGgVS6toFkdArXFKyGBWgnV9lChoBmgJaA9DCA9EFmlirG9AlIaUUpRoFUvaaBZHQK1xhfUnXup1fZQoaAZoCWgPQwi2vkhoy9VwQJSGlFKUaBVLxmgWR0CtcYxGUfPpdX2UKGgGaAloD0MIwqVjzvMCdECUhpRSlGgVS8xoFkdArXI84YJmd3V9lChoBmgJaA9DCMN+T6wTS3RAlIaUUpRoFUvNaBZHQK1yxITXarZ1fZQoaAZoCWgPQwgYJH1ahcdxQJSGlFKUaBVLxWgWR0CtcvqqXF98dX2UKGgGaAloD0MIt5xLcZUkc0CUhpRSlGgVTQgBaBZHQK1y+pazNUx1fZQoaAZoCWgPQwjOGOYE7fFwQJSGlFKUaBVLz2gWR0Ctcxc1wYLtdX2UKGgGaAloD0MIlGdeDnvJc0CUhpRSlGgVS9BoFkdArXMpmseXA3V9lChoBmgJaA9DCAltOZciYHFAlIaUUpRoFUvQaBZHQK1zQzlcQiB1fZQoaAZoCWgPQwj5LTpZatByQJSGlFKUaBVL52gWR0Ctc0z+3pfQdX2UKGgGaAloD0MIs5quJ3psc0CUhpRSlGgVS9FoFkdArXNYFX7tRnV9lChoBmgJaA9DCIAPXrs0mHFAlIaUUpRoFUvQaBZHQK1zYNsFdLR1fZQoaAZoCWgPQwj68gLso8JyQJSGlFKUaBVLqmgWR0Ctc+iqQzUJdX2UKGgGaAloD0MIg2xZvu7/ckCUhpRSlGgVS+RoFkdArXQSIJqqO3V9lChoBmgJaA9DCPdWJCYoVnBAlIaUUpRoFUu/aBZHQK10IAPNFBp1fZQoaAZoCWgPQwjk3Cbc6x5zQJSGlFKUaBVLs2gWR0CtdEb1qWTpdX2UKGgGaAloD0MISRRa1n2+cUCUhpRSlGgVS8RoFkdArXSFAAyVOnV9lChoBmgJaA9DCALYgAhxDXNAlIaUUpRoFU1gAWgWR0CtdJsFMZgpdX2UKGgGaAloD0MIUb01sNXrcUCUhpRSlGgVS+doFkdArXVFz8xbjnV9lChoBmgJaA9DCIqtoGnJ6XBAlIaUUpRoFUuwaBZHQK11R5TqB3B1fZQoaAZoCWgPQwhblNkg02ZyQJSGlFKUaBVLumgWR0CtdUW1twaSdX2UKGgGaAloD0MIEi9P50pXcUCUhpRSlGgVS61oFkdArXVWnn+yaHV9lChoBmgJaA9DCGfyzTb3SnJAlIaUUpRoFUvCaBZHQK11Wpy6tkp1fZQoaAZoCWgPQwj+gXLbPiByQJSGlFKUaBVLwmgWR0CtdWbmMfihdX2UKGgGaAloD0MIu3uA7ss0dECUhpRSlGgVS9toFkdArXV2q5sj3XV9lChoBmgJaA9DCIm0jT/RTnNAlIaUUpRoFUvWaBZHQK11qinHead1fZQoaAZoCWgPQwgVjErqxJJzQJSGlFKUaBVL1mgWR0CtdbdJ8OTadX2UKGgGaAloD0MIyoy3lR6ac0CUhpRSlGgVS9VoFkdArXW6E6DGtXV9lChoBmgJaA9DCIbHfhbL4m9AlIaUUpRoFUu8aBZHQK11z91EE1V1fZQoaAZoCWgPQwh3o4/5APlvQJSGlFKUaBVLtmgWR0CtdeArQPZqdX2UKGgGaAloD0MIZyjueNO4cUCUhpRSlGgVS+loFkdArXZHcN6PbXV9lChoBmgJaA9DCCcSTDWzkXJAlIaUUpRoFUu/aBZHQK12RrxAjY91fZQoaAZoCWgPQwiGrdnKS/txQJSGlFKUaBVLzGgWR0Ctdk8h9srNdX2UKGgGaAloD0MIg23Ek51+ckCUhpRSlGgVS+JoFkdArXZXk5p8GHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29837e81ae9e7118bfaf7a9ae99ff85f808ed7a000ecbf18192ba1b6f4dd573a
|
3 |
+
size 147298
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7711f31c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7711f31ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7711f31d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7711f31dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7711f31e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7711f31ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7711f31f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7711f35040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7711f350d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7711f35160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7711f351f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7711f35280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f7711f2c900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 5013504,
|
47 |
+
"_total_timesteps": 5000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1676647170772203249,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYYTjzD2WS6+HMItU9DjrBS76Q6tidzNAAAgD8AAIA/jnWYvvqPPj8qud+92Z44v+ON8r4/L5s8AAAAAAAAAADaNvU9PPJEP7Pdpjt+6Ry/L9A+PmbTeb0AAAAAAAAAAID6Gb1I7eq8ypKWOvBFpDu6k6a87qjfvAAAgD8AAIA/zZCJPSlsNbpIf4q51ewMtTnYnTtZ96A4AACAPwAAAADmtyA9HLgLPcczIr6Qh9W+YO2HvTfhKL0AAAAAAAAAAGYNrrwKf0C7ICsjvHpAjDyNxpU8XpZxvQAAgD8AAIA/8wmFvTXBCj/mVaG7sdQJv6B1nr0il8s8AAAAAAAAAACTKW0+uxIbP/KYL71vxgK/T0vAPmgd9r0AAAAAAAAAALPSE70UCLq6OPjXOyASnzle/PU5is6WuQAAgD8AAIA/mqmIPQsIuz0qcQe++VTVvutMab2VXfa8AAAAAAAAAABmhvq8VP23vI7XML0Q3RK+tZ4BPlEVJz8AAIA/AACAP836DLw9by27Y3F2Pql6gL7bSeM9/jUbvwAAAAAAAIA/zZYPvUUBID7KDyc+Ih7DvvhYDz092NI9AAAAAAAAAAAA2ka80j/quz6GgrzwOG08pOlfPbDOSL0AAIA/AACAPwAw5LvXMEW7hIsOO8pBdzzgSpm8nWlWPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcmw9Q/jocUCUhpRSlIwBbJRLyowBdJRHQK1eoIw/PgN1fZQoaAZoCWgPQwi309aIYCNzQJSGlFKUaBVL1GgWR0CtXv0BwMpgdX2UKGgGaAloD0MIZd8Vwb8GckCUhpRSlGgVS7BoFkdArV9YPiDM/3V9lChoBmgJaA9DCG8QrRVt2HJAlIaUUpRoFUvYaBZHQK1fX4Uvf0p1fZQoaAZoCWgPQwgHswkwrF5xQJSGlFKUaBVLsGgWR0CtX3GUGFBZdX2UKGgGaAloD0MIWBtjJ7ypcUCUhpRSlGgVS7ZoFkdArV+JyEL6UXV9lChoBmgJaA9DCHP2zmirmFBAlIaUUpRoFUuBaBZHQK1fk+7Dl5p1fZQoaAZoCWgPQwgtsTIa+YZyQJSGlFKUaBVLsmgWR0CtX6H3ta6jdX2UKGgGaAloD0MIU9DtJQ1uc0CUhpRSlGgVS8JoFkdArV+juKGcnXV9lChoBmgJaA9DCNTX8zXLmnNAlIaUUpRoFUvEaBZHQK1ftSThYNl1fZQoaAZoCWgPQwjGppVCIGFyQJSGlFKUaBVLpWgWR0CtX9hmGucMdX2UKGgGaAloD0MIJGB0efO+c0CUhpRSlGgVS8doFkdArV/qsCDEnHV9lChoBmgJaA9DCNHP1OtWU3NAlIaUUpRoFUvGaBZHQK1f+scQyyl1fZQoaAZoCWgPQwicxCCw8vBwQJSGlFKUaBVLvmgWR0CtYAm65Gz9dX2UKGgGaAloD0MIsrj/yDTbcUCUhpRSlGgVS8hoFkdArWAPRkVer3V9lChoBmgJaA9DCIQOuoRDzXFAlIaUUpRoFUuuaBZHQK1gGEDhcZ91fZQoaAZoCWgPQwgyyjMvBwlzQJSGlFKUaBVL4WgWR0CtYI11GLDRdX2UKGgGaAloD0MIYTdsW1TtckCUhpRSlGgVS85oFkdArWDHrMTviXV9lChoBmgJaA9DCKmj42ok2HFAlIaUUpRoFUuzaBZHQK1g6hB7eEZ1fZQoaAZoCWgPQwhbXyS05cluQJSGlFKUaBVLumgWR0CtYPRlHz6KdX2UKGgGaAloD0MIatyb37BHc0CUhpRSlGgVS7loFkdArWqj28IzFnV9lChoBmgJaA9DCGCt2jWh+3BAlIaUUpRoFUvNaBZHQK1qouvllsh1fZQoaAZoCWgPQwjudygKtMBxQJSGlFKUaBVLwmgWR0CtaqEORT0hdX2UKGgGaAloD0MIOKClK1j5cUCUhpRSlGgVS8BoFkdArWq0+aBqbnV9lChoBmgJaA9DCMK9Mm+VUXJAlIaUUpRoFUvOaBZHQK1qyJ1q33J1fZQoaAZoCWgPQwi7D0BqE2RxQJSGlFKUaBVLtmgWR0Ctatjh99c9dX2UKGgGaAloD0MI2bRSCKRAckCUhpRSlGgVS9BoFkdArWrrOs1baHV9lChoBmgJaA9DCD/G3LVEEnFAlIaUUpRoFUu6aBZHQK1q8fJ3gUF1fZQoaAZoCWgPQwgm4xjJ3vJyQJSGlFKUaBVLrmgWR0CtawUh3aBadX2UKGgGaAloD0MIxHx5AfavcECUhpRSlGgVS71oFkdArWsUrTYukHV9lChoBmgJaA9DCAAbECGuBnFAlIaUUpRoFUvQaBZHQK1rLDb8FZB1fZQoaAZoCWgPQwgW+fVDLCtyQJSGlFKUaBVLzmgWR0Cta0MLfDUFdX2UKGgGaAloD0MI7e9sj96bbkCUhpRSlGgVS8BoFkdArWvWj9GZu3V9lChoBmgJaA9DCM5wAz4/q3BAlIaUUpRoFUu5aBZHQK1sQe+23KB1fZQoaAZoCWgPQwhwXMZNDZ50QJSGlFKUaBVLuWgWR0CtbE8/MW43dX2UKGgGaAloD0MIV0Chnj50cECUhpRSlGgVS9FoFkdArWxhRKpT/HV9lChoBmgJaA9DCKoKDcQyVHFAlIaUUpRoFUu8aBZHQK1st5VwPy11fZQoaAZoCWgPQwh319mQP+VwQJSGlFKUaBVLvmgWR0CtbMJ0GNaRdX2UKGgGaAloD0MIPGwiM9d3cECUhpRSlGgVS7doFkdArWzkvM8oyHV9lChoBmgJaA9DCOV7RiI05HBAlIaUUpRoFUvJaBZHQK1s7NQj2SN1fZQoaAZoCWgPQwjk3CbcK05wQJSGlFKUaBVL0GgWR0CtbVFv60pmdX2UKGgGaAloD0MI740hALjqckCUhpRSlGgVS8hoFkdArW1fVG0/nnV9lChoBmgJaA9DCBiZgF+jx3FAlIaUUpRoFUvoaBZHQK1tcfxMFll1fZQoaAZoCWgPQwiEfxE05ihzQJSGlFKUaBVLyWgWR0CtbYMIeHSGdX2UKGgGaAloD0MIKhprfycqdECUhpRSlGgVS+NoFkdArW2p04iosXV9lChoBmgJaA9DCHI3iNZKuHNAlIaUUpRoFUu+aBZHQK1tsbADaGp1fZQoaAZoCWgPQwh39pUHKdlzQJSGlFKUaBVL0WgWR0CtbbHjQzDXdX2UKGgGaAloD0MIJNV3fpGhckCUhpRSlGgVS9loFkdArW3nseGO/HV9lChoBmgJaA9DCEsEqn9Q43JAlIaUUpRoFUvNaBZHQK1uaS5AhSt1fZQoaAZoCWgPQwj2tpkKschxQJSGlFKUaBVLsWgWR0CtboEjopx4dX2UKGgGaAloD0MIB3k9mNSmcUCUhpRSlGgVS8FoFkdArW7JfShJy3V9lChoBmgJaA9DCHOBy2MNTHBAlIaUUpRoFUvUaBZHQK1u6ifQKKJ1fZQoaAZoCWgPQwiyRj1Eo89xQJSGlFKUaBVLwGgWR0CtbyRX4j8ldX2UKGgGaAloD0MIBMqmXCHXc0CUhpRSlGgVS8xoFkdArW9ZAB1cMXV9lChoBmgJaA9DCCrj32fcfXJAlIaUUpRoFUvMaBZHQK1vfVtoBaN1fZQoaAZoCWgPQwgMW7OVl1BzQJSGlFKUaBVL5GgWR0Ctb83HBDXwdX2UKGgGaAloD0MINSkF3V4Xb0CUhpRSlGgVS8loFkdArW/iWqtHQXV9lChoBmgJaA9DCHBDjNc8XHFAlIaUUpRoFUu0aBZHQK1wDGWD6Fd1fZQoaAZoCWgPQwj1uG+1TulxQJSGlFKUaBVLyGgWR0CtcBk5ZKWcdX2UKGgGaAloD0MIak5eZIJ/ckCUhpRSlGgVS7toFkdArXAcGcFyJnV9lChoBmgJaA9DCCdMGM3KoHJAlIaUUpRoFUvUaBZHQK1wL8m8dxR1fZQoaAZoCWgPQwhLkBFQ4VVxQJSGlFKUaBVL3mgWR0CtcD9gWrOrdX2UKGgGaAloD0MIGw5LA//6c0CUhpRSlGgVS8ZoFkdArXBJu0kWynV9lChoBmgJaA9DCNxHbk06GHNAlIaUUpRoFUvOaBZHQK1wngWJrL11fZQoaAZoCWgPQwjOUNzx5lZxQJSGlFKUaBVLy2gWR0CtcTAXdj5LdX2UKGgGaAloD0MIQdMSK2O9ckCUhpRSlGgVS6toFkdArXFKyGBWgnV9lChoBmgJaA9DCA9EFmlirG9AlIaUUpRoFUvaaBZHQK1xhfUnXup1fZQoaAZoCWgPQwi2vkhoy9VwQJSGlFKUaBVLxmgWR0CtcYxGUfPpdX2UKGgGaAloD0MIwqVjzvMCdECUhpRSlGgVS8xoFkdArXI84YJmd3V9lChoBmgJaA9DCMN+T6wTS3RAlIaUUpRoFUvNaBZHQK1yxITXarZ1fZQoaAZoCWgPQwgYJH1ahcdxQJSGlFKUaBVLxWgWR0CtcvqqXF98dX2UKGgGaAloD0MIt5xLcZUkc0CUhpRSlGgVTQgBaBZHQK1y+pazNUx1fZQoaAZoCWgPQwjOGOYE7fFwQJSGlFKUaBVLz2gWR0Ctcxc1wYLtdX2UKGgGaAloD0MIlGdeDnvJc0CUhpRSlGgVS9BoFkdArXMpmseXA3V9lChoBmgJaA9DCAltOZciYHFAlIaUUpRoFUvQaBZHQK1zQzlcQiB1fZQoaAZoCWgPQwj5LTpZatByQJSGlFKUaBVL52gWR0Ctc0z+3pfQdX2UKGgGaAloD0MIs5quJ3psc0CUhpRSlGgVS9FoFkdArXNYFX7tRnV9lChoBmgJaA9DCIAPXrs0mHFAlIaUUpRoFUvQaBZHQK1zYNsFdLR1fZQoaAZoCWgPQwj68gLso8JyQJSGlFKUaBVLqmgWR0Ctc+iqQzUJdX2UKGgGaAloD0MIg2xZvu7/ckCUhpRSlGgVS+RoFkdArXQSIJqqO3V9lChoBmgJaA9DCPdWJCYoVnBAlIaUUpRoFUu/aBZHQK10IAPNFBp1fZQoaAZoCWgPQwjk3Cbc6x5zQJSGlFKUaBVLs2gWR0CtdEb1qWTpdX2UKGgGaAloD0MISRRa1n2+cUCUhpRSlGgVS8RoFkdArXSFAAyVOnV9lChoBmgJaA9DCALYgAhxDXNAlIaUUpRoFU1gAWgWR0CtdJsFMZgpdX2UKGgGaAloD0MIUb01sNXrcUCUhpRSlGgVS+doFkdArXVFz8xbjnV9lChoBmgJaA9DCIqtoGnJ6XBAlIaUUpRoFUuwaBZHQK11R5TqB3B1fZQoaAZoCWgPQwhblNkg02ZyQJSGlFKUaBVLumgWR0CtdUW1twaSdX2UKGgGaAloD0MIEi9P50pXcUCUhpRSlGgVS61oFkdArXVWnn+yaHV9lChoBmgJaA9DCGfyzTb3SnJAlIaUUpRoFUvCaBZHQK11Wpy6tkp1fZQoaAZoCWgPQwj+gXLbPiByQJSGlFKUaBVLwmgWR0CtdWbmMfihdX2UKGgGaAloD0MIu3uA7ss0dECUhpRSlGgVS9toFkdArXV2q5sj3XV9lChoBmgJaA9DCIm0jT/RTnNAlIaUUpRoFUvWaBZHQK11qinHead1fZQoaAZoCWgPQwgVjErqxJJzQJSGlFKUaBVL1mgWR0CtdbdJ8OTadX2UKGgGaAloD0MIyoy3lR6ac0CUhpRSlGgVS9VoFkdArXW6E6DGtXV9lChoBmgJaA9DCIbHfhbL4m9AlIaUUpRoFUu8aBZHQK11z91EE1V1fZQoaAZoCWgPQwh3o4/5APlvQJSGlFKUaBVLtmgWR0CtdeArQPZqdX2UKGgGaAloD0MIZyjueNO4cUCUhpRSlGgVS+loFkdArXZHcN6PbXV9lChoBmgJaA9DCCcSTDWzkXJAlIaUUpRoFUu/aBZHQK12RrxAjY91fZQoaAZoCWgPQwiGrdnKS/txQJSGlFKUaBVLzGgWR0Ctdk8h9srNdX2UKGgGaAloD0MIg23Ek51+ckCUhpRSlGgVS+JoFkdArXZXk5p8GHVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 1224,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18db8dde11f9dc29176f733f14f74d05e8a5b8a83ace20897bdaa92704b7f65a
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c036d618ea3fb5d4e6d36d43a2d66251de3fcf756f9af3cee8ad43a70734bd1f
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 284.5394243716622, "std_reward": 15.484942248717914, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-17T16:28:56.753929"}
|