Loriiis commited on
Commit
a0996a6
·
1 Parent(s): b260674

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.21 +/- 0.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85f692e4cb0926c7af4d8d32601fc7d31dedeb95ae8b20a9211bcee40fd6e27f
3
+ size 108094
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bbffeaf9120>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7bbffeaf5640>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1698748711588509867,
28
+ "learning_rate": 0.001,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxNupPjqTBjwE1Ow+xNupPjqTBjwE1Ow+xNupPjqTBjwE1Ow+xNupPjqTBjwE1Ow+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/6Jwv+IYDD/Qgf49KyEVPprLLT+pmKY+3zMcPgVMtz9ElIq/PcCIPl9v0T/iC6O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADE26k+OpMGPATU7D5AhPE+lXNeOvg1xT7E26k+OpMGPATU7D5AhPE+lXNeOvg1xT7E26k+OpMGPATU7D5AhPE+lXNeOvg1xT7E26k+OpMGPATU7D5AhPE+lXNeOvg1xT6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[0.3317548 0.00821381 0.46255505]\n [0.3317548 0.00821381 0.46255505]\n [0.3317548 0.00821381 0.46255505]\n [0.3317548 0.00821381 0.46255505]]",
34
+ "desired_goal": "[[-0.9399871 0.5472547 0.12427104]\n [ 0.14563434 0.67888796 0.32538345]\n [ 0.15254162 1.4320074 -1.0826497 ]\n [ 0.26709166 1.6362113 -1.2738001 ]]",
35
+ "observation": "[[0.3317548 0.00821381 0.46255505 0.4717121 0.00084859 0.38517737]\n [0.3317548 0.00821381 0.46255505 0.4717121 0.00084859 0.38517737]\n [0.3317548 0.00821381 0.46255505 0.4717121 0.00084859 0.38517737]\n [0.3317548 0.00821381 0.46255505 0.4717121 0.00084859 0.38517737]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhigRvrogEj3XPxs+mmDHPW1pob06HVM8gohivSfE+T3q+IU+TsUFvogY3b3Q0Io+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.14175615 0.03567574 0.15161072]\n [ 0.09735222 -0.07881436 0.01288539]\n [-0.05530597 0.12195616 0.2616647 ]\n [-0.13063547 -0.10795695 0.27112436]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8cyN4qwyIqMAWyUSwOMAXSUR0CmtnbAk9lmdX2UKGgGR7+4d92HLzPKaAdLAmgIR0Cmtj0pEx7BdX2UKGgGR7+2Z/kNnXd1aAdLAmgIR0Cmtr3np0OmdX2UKGgGR7/acDbJwKjSaAdLBGgIR0CmtwE2pAD8dX2UKGgGR7+/PLPldTo/aAdLAmgIR0Cmts/fXPJJdX2UKGgGR7/SVTaTOgQIaAdLA2gIR0CmtpFCCz1LdX2UKGgGR7/LCWNWEK3NaAdLA2gIR0CmtldKNAC5dX2UKGgGR7+SmhufmLccaAdLAWgIR0CmtphLf1pTdX2UKGgGR7/Y9ycTakAQaAdLBGgIR0CmtyBr30wrdX2UKGgGR7/ItkFwDNhWaAdLA2gIR0CmtuTuF6AwdX2UKGgGR7/GhC+lCTllaAdLA2gIR0Cmtmwa72+PdX2UKGgGR7/SsolUp/gBaAdLA2gIR0Cmtq2l2vB8dX2UKGgGR7+zSF49ovi+aAdLAmgIR0CmtvcdgfEGdX2UKGgGR7+ksWfseGO/aAdLAWgIR0CmtriXyAhCdX2UKGgGR7/PtVJcxCY1aAdLA2gIR0CmtzqM3qA0dX2UKGgGR7+ga5wwTM7maAdLAWgIR0Cmtv7iqABldX2UKGgGR7/LASnLq2SdaAdLA2gIR0CmtoXjU/fPdX2UKGgGR7+8Fr2xptaZaAdLAmgIR0Cmt0jZcs19dX2UKGgGR7/PHAh0Qsf8aAdLA2gIR0CmtxPrnkksdX2UKGgGR7/bZydWhh6TaAdLBGgIR0CmttVb7j1gdX2UKGgGR7/VIX0oScslaAdLA2gIR0CmtptqYZ2qdX2UKGgGR7+5v863iJfqaAdLAmgIR0CmtuatDD0ldX2UKGgGR7/V2gFotcv/aAdLBGgIR0Cmt2hbGFSLdX2UKGgGR7/KyDZlFtsOaAdLA2gIR0CmtyzKT0QLdX2UKGgGR7/MYG+sYEW7aAdLA2gIR0CmtrRK6FufdX2UKGgGR7+Mu8K5TZQIaAdLAWgIR0Cmt3COmzjWdX2UKGgGR7/B1L8Jlar4aAdLAmgIR0CmtzuvdM0xdX2UKGgGR7/O2v0RODaoaAdLA2gIR0Cmtv2M0gr6dX2UKGgGR7/TFvQ4S6DoaAdLA2gIR0Cmts6C+UQkdX2UKGgGR7/PJlrdnCfpaAdLBGgIR0Cmt5DQqqffdX2UKGgGR7/HgXuVopQUaAdLA2gIR0CmtxZI6KcedX2UKGgGR7/brJr+HaexaAdLBGgIR0Cmt1wmeDnOdX2UKGgGR7/SYtg8bJfZaAdLA2gIR0CmtuMU7CBPdX2UKGgGR7+954W1twaSaAdLAmgIR0CmtyPiDM/ydX2UKGgGR7/Vl4keIVM3aAdLBGgIR0Cmt69dmg8KdX2UKGgGR7/JTuOS4e90aAdLA2gIR0Cmt3PA44p+dX2UKGgGR7/KHxBmf5DaaAdLA2gIR0CmtvtxMnJDdX2UKGgGR7/ShxHXmNipaAdLA2gIR0CmtzyIHkcTdX2UKGgGR7+7X18LKFIvaAdLAmgIR0Cmt75q/M4cdX2UKGgGR7/HfGdZq20BaAdLA2gIR0CmtxCpvP1MdX2UKGgGR7++8QI2OyVwaAdLAmgIR0Cmt9BB7eEadX2UKGgGR7/ZJgb6xgRcaAdLBGgIR0Cmt5SjxkNGdX2UKGgGR7/RhW5paiblaAdLA2gIR0Cmt1YNZvDQdX2UKGgGR7+1bSqlxffGaAdLAmgIR0Cmt6QgcLjQdX2UKGgGR7/RcynDR+jNaAdLA2gIR0Cmtyt8VpK0dX2UKGgGR7/TGwzLwF1TaAdLA2gIR0Cmt+eH8CPqdX2UKGgGR7+5O9FnZkCnaAdLAmgIR0Cmt7KT8pCsdX2UKGgGR7/KULUkOZssaAdLBGgIR0Cmt3QLVnVYdX2UKGgGR7++Fev6j323aAdLAmgIR0CmtzoFvAGjdX2UKGgGR7/TxubZvkzXaAdLA2gIR0CmuAA4XGfgdX2UKGgGR7/PanrIHTqjaAdLA2gIR0Cmt4y2H+IedX2UKGgGR7/HLRKHwgDBaAdLA2gIR0Cmt1K2BreqdX2UKGgGR7/A1tO2y9mIaAdLAmgIR0CmuA6xHG0edX2UKGgGR7/YwZOzposaaAdLBGgIR0Cmt9OpKjBVdX2UKGgGR7+lpCa7VawEaAdLAWgIR0Cmt1qsEJSjdX2UKGgGR7/RUDdP+GXYaAdLA2gIR0Cmt6XIuGsWdX2UKGgGR7/DcY64lQdkaAdLA2gIR0Cmt+uE25xzdX2UKGgGR7+h6KLsKLKnaAdLAWgIR0Cmt6zJp35fdX2UKGgGR7/OrNGEwnIAaAdLA2gIR0Cmt3LYXfqHdX2UKGgGR7/aSwnpjc2zaAdLBGgIR0CmuC7wrlNldX2UKGgGR7/NcIJJGvwFaAdLA2gIR0CmuAAr6LwXdX2UKGgGR7/ONOuaF23baAdLA2gIR0Cmt8GReTmodX2UKGgGR7/TAgPmPo3aaAdLA2gIR0Cmt4eaScLCdX2UKGgGR7/J7AtWdVebaAdLA2gIR0CmuEcvM8oydX2UKGgGR7+1yxRl6JIlaAdLAmgIR0Cmt5jgqEvkdX2UKGgGR7/Dph4MWoFWaAdLA2gIR0CmuBjBl+VkdX2UKGgGR7/T5nDiwSrYaAdLA2gIR0Cmt9qur6tUdX2UKGgGR7/TcG1QZXMhaAdLBGgIR0CmuGLq2SdOdX2UKGgGR7+0Qe3hGYrsaAdLAmgIR0Cmt+hIOH32dX2UKGgGR7/NA8B+4LCvaAdLA2gIR0Cmt65OSGJvdX2UKGgGR7/WA5q/M4cWaAdLA2gIR0CmuDIAGSpzdX2UKGgGR7+1q0tyxRl6aAdLAmgIR0CmuHTKLbYcdX2UKGgGR7+3bqQiiZfEaAdLAmgIR0Cmt/pJXhfjdX2UKGgGR7/BpNbkfcN6aAdLAmgIR0CmuEAggX/HdX2UKGgGR7+lIK+i8FpxaAdLAWgIR0CmuEcGcFyJdX2UKGgGR7/a/wRXfZVXaAdLBGgIR0Cmt84sd1dPdX2UKGgGR7/OkGA08/2TaAdLA2gIR0CmuA+UQkHEdX2UKGgGR7/XWTX8O09haAdLBGgIR0CmuJS0jTrndX2UKGgGR7++yKNyYG+saAdLAmgIR0CmuFkJKJ2udX2UKGgGR7/BtwaR6nivaAdLAmgIR0CmuCDVx0dSdX2UKGgGR7/Kws5GSZBtaAdLA2gIR0Cmt+Zb6guidX2UKGgGR7/EAWi1y/9HaAdLAmgIR0CmuKFQ2uPndX2UKGgGR7/PvVmSQo1DaAdLA2gIR0CmuGk8A7xNdX2UKGgGR7/NI6r/82rGaAdLA2gIR0Cmt/NITXardX2UKGgGR7/XstCiRGMGaAdLBGgIR0CmuDTaK1ohdX2UKGgGR7/RKV6eGwiaaAdLBGgIR0CmuLTqB3A3dX2UKGgGR7/QLi++M6zWaAdLA2gIR0CmuHixu89PdX2UKGgGR7+dUn5SFXaKaAdLAWgIR0CmuDliKBNFdX2UKGgGR7/QqGDcuanaaAdLA2gIR0CmuALJr+HadX2UKGgGR7+8hPj4pMHsaAdLAmgIR0CmuIGyxA0LdX2UKGgGR7+9t52Qnx8VaAdLAmgIR0CmuEKAavRrdX2UKGgGR7/WRGtp22XtaAdLA2gIR0CmuMLKFIuodX2UKGgGR7+4vqTr3TNMaAdLAmgIR0CmuIz0QK8ddX2UKGgGR7/OyY5T6zmfaAdLA2gIR0CmuFHuqm0mdX2UKGgGR7/QDMvAXVLBaAdLA2gIR0CmuNIN/e+FdX2UKGgGR7/dRPoFFDv3aAdLBWgIR0CmuBvQv6CUdX2UKGgGR7+2BSUC7sfJaAdLAmgIR0CmuNronrprdX2UKGgGR7/WaWX1J17qaAdLBGgIR0CmuJ6x5cC6dX2UKGgGR7/RI/JNj9XLaAdLA2gIR0CmuF9sBQvYdX2UKGgGR7+6Y5T6zmfXaAdLAmgIR0CmuCTyz5XVdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.95,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ab257da0f09590b70e0babaf5c3425af07c48f44811452fdb930db12fb94f2b
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eba76e4cc23742870990da6245e6d39cb41c994f51947d9f4c93f1f2aab3d8d
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bbffeaf9120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bbffeaf5640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698748711588509867, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxNupPjqTBjwE1Ow+xNupPjqTBjwE1Ow+xNupPjqTBjwE1Ow+xNupPjqTBjwE1Ow+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/6Jwv+IYDD/Qgf49KyEVPprLLT+pmKY+3zMcPgVMtz9ElIq/PcCIPl9v0T/iC6O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADE26k+OpMGPATU7D5AhPE+lXNeOvg1xT7E26k+OpMGPATU7D5AhPE+lXNeOvg1xT7E26k+OpMGPATU7D5AhPE+lXNeOvg1xT7E26k+OpMGPATU7D5AhPE+lXNeOvg1xT6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3317548 0.00821381 0.46255505]\n [0.3317548 0.00821381 0.46255505]\n [0.3317548 0.00821381 0.46255505]\n [0.3317548 0.00821381 0.46255505]]", "desired_goal": "[[-0.9399871 0.5472547 0.12427104]\n [ 0.14563434 0.67888796 0.32538345]\n [ 0.15254162 1.4320074 -1.0826497 ]\n [ 0.26709166 1.6362113 -1.2738001 ]]", "observation": "[[0.3317548 0.00821381 0.46255505 0.4717121 0.00084859 0.38517737]\n [0.3317548 0.00821381 0.46255505 0.4717121 0.00084859 0.38517737]\n [0.3317548 0.00821381 0.46255505 0.4717121 0.00084859 0.38517737]\n [0.3317548 0.00821381 0.46255505 0.4717121 0.00084859 0.38517737]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhigRvrogEj3XPxs+mmDHPW1pob06HVM8gohivSfE+T3q+IU+TsUFvogY3b3Q0Io+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14175615 0.03567574 0.15161072]\n [ 0.09735222 -0.07881436 0.01288539]\n [-0.05530597 0.12195616 0.2616647 ]\n [-0.13063547 -0.10795695 0.27112436]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8cyN4qwyIqMAWyUSwOMAXSUR0CmtnbAk9lmdX2UKGgGR7+4d92HLzPKaAdLAmgIR0Cmtj0pEx7BdX2UKGgGR7+2Z/kNnXd1aAdLAmgIR0Cmtr3np0OmdX2UKGgGR7/acDbJwKjSaAdLBGgIR0CmtwE2pAD8dX2UKGgGR7+/PLPldTo/aAdLAmgIR0Cmts/fXPJJdX2UKGgGR7/SVTaTOgQIaAdLA2gIR0CmtpFCCz1LdX2UKGgGR7/LCWNWEK3NaAdLA2gIR0CmtldKNAC5dX2UKGgGR7+SmhufmLccaAdLAWgIR0CmtphLf1pTdX2UKGgGR7/Y9ycTakAQaAdLBGgIR0CmtyBr30wrdX2UKGgGR7/ItkFwDNhWaAdLA2gIR0CmtuTuF6AwdX2UKGgGR7/GhC+lCTllaAdLA2gIR0Cmtmwa72+PdX2UKGgGR7/SsolUp/gBaAdLA2gIR0Cmtq2l2vB8dX2UKGgGR7+zSF49ovi+aAdLAmgIR0CmtvcdgfEGdX2UKGgGR7+ksWfseGO/aAdLAWgIR0CmtriXyAhCdX2UKGgGR7/PtVJcxCY1aAdLA2gIR0CmtzqM3qA0dX2UKGgGR7+ga5wwTM7maAdLAWgIR0Cmtv7iqABldX2UKGgGR7/LASnLq2SdaAdLA2gIR0CmtoXjU/fPdX2UKGgGR7+8Fr2xptaZaAdLAmgIR0Cmt0jZcs19dX2UKGgGR7/PHAh0Qsf8aAdLA2gIR0CmtxPrnkksdX2UKGgGR7/bZydWhh6TaAdLBGgIR0CmttVb7j1gdX2UKGgGR7/VIX0oScslaAdLA2gIR0CmtptqYZ2qdX2UKGgGR7+5v863iJfqaAdLAmgIR0CmtuatDD0ldX2UKGgGR7/V2gFotcv/aAdLBGgIR0Cmt2hbGFSLdX2UKGgGR7/KyDZlFtsOaAdLA2gIR0CmtyzKT0QLdX2UKGgGR7/MYG+sYEW7aAdLA2gIR0CmtrRK6FufdX2UKGgGR7+Mu8K5TZQIaAdLAWgIR0Cmt3COmzjWdX2UKGgGR7/B1L8Jlar4aAdLAmgIR0CmtzuvdM0xdX2UKGgGR7/O2v0RODaoaAdLA2gIR0Cmtv2M0gr6dX2UKGgGR7/TFvQ4S6DoaAdLA2gIR0Cmts6C+UQkdX2UKGgGR7/PJlrdnCfpaAdLBGgIR0Cmt5DQqqffdX2UKGgGR7/HgXuVopQUaAdLA2gIR0CmtxZI6KcedX2UKGgGR7/brJr+HaexaAdLBGgIR0Cmt1wmeDnOdX2UKGgGR7/SYtg8bJfZaAdLA2gIR0CmtuMU7CBPdX2UKGgGR7+954W1twaSaAdLAmgIR0CmtyPiDM/ydX2UKGgGR7/Vl4keIVM3aAdLBGgIR0Cmt69dmg8KdX2UKGgGR7/JTuOS4e90aAdLA2gIR0Cmt3PA44p+dX2UKGgGR7/KHxBmf5DaaAdLA2gIR0CmtvtxMnJDdX2UKGgGR7/ShxHXmNipaAdLA2gIR0CmtzyIHkcTdX2UKGgGR7+7X18LKFIvaAdLAmgIR0Cmt75q/M4cdX2UKGgGR7/HfGdZq20BaAdLA2gIR0CmtxCpvP1MdX2UKGgGR7++8QI2OyVwaAdLAmgIR0Cmt9BB7eEadX2UKGgGR7/ZJgb6xgRcaAdLBGgIR0Cmt5SjxkNGdX2UKGgGR7/RhW5paiblaAdLA2gIR0Cmt1YNZvDQdX2UKGgGR7+1bSqlxffGaAdLAmgIR0Cmt6QgcLjQdX2UKGgGR7/RcynDR+jNaAdLA2gIR0Cmtyt8VpK0dX2UKGgGR7/TGwzLwF1TaAdLA2gIR0Cmt+eH8CPqdX2UKGgGR7+5O9FnZkCnaAdLAmgIR0Cmt7KT8pCsdX2UKGgGR7/KULUkOZssaAdLBGgIR0Cmt3QLVnVYdX2UKGgGR7++Fev6j323aAdLAmgIR0CmtzoFvAGjdX2UKGgGR7/TxubZvkzXaAdLA2gIR0CmuAA4XGfgdX2UKGgGR7/PanrIHTqjaAdLA2gIR0Cmt4y2H+IedX2UKGgGR7/HLRKHwgDBaAdLA2gIR0Cmt1K2BreqdX2UKGgGR7/A1tO2y9mIaAdLAmgIR0CmuA6xHG0edX2UKGgGR7/YwZOzposaaAdLBGgIR0Cmt9OpKjBVdX2UKGgGR7+lpCa7VawEaAdLAWgIR0Cmt1qsEJSjdX2UKGgGR7/RUDdP+GXYaAdLA2gIR0Cmt6XIuGsWdX2UKGgGR7/DcY64lQdkaAdLA2gIR0Cmt+uE25xzdX2UKGgGR7+h6KLsKLKnaAdLAWgIR0Cmt6zJp35fdX2UKGgGR7/OrNGEwnIAaAdLA2gIR0Cmt3LYXfqHdX2UKGgGR7/aSwnpjc2zaAdLBGgIR0CmuC7wrlNldX2UKGgGR7/NcIJJGvwFaAdLA2gIR0CmuAAr6LwXdX2UKGgGR7/ONOuaF23baAdLA2gIR0Cmt8GReTmodX2UKGgGR7/TAgPmPo3aaAdLA2gIR0Cmt4eaScLCdX2UKGgGR7/J7AtWdVebaAdLA2gIR0CmuEcvM8oydX2UKGgGR7+1yxRl6JIlaAdLAmgIR0Cmt5jgqEvkdX2UKGgGR7/Dph4MWoFWaAdLA2gIR0CmuBjBl+VkdX2UKGgGR7/T5nDiwSrYaAdLA2gIR0Cmt9qur6tUdX2UKGgGR7/TcG1QZXMhaAdLBGgIR0CmuGLq2SdOdX2UKGgGR7+0Qe3hGYrsaAdLAmgIR0Cmt+hIOH32dX2UKGgGR7/NA8B+4LCvaAdLA2gIR0Cmt65OSGJvdX2UKGgGR7/WA5q/M4cWaAdLA2gIR0CmuDIAGSpzdX2UKGgGR7+1q0tyxRl6aAdLAmgIR0CmuHTKLbYcdX2UKGgGR7+3bqQiiZfEaAdLAmgIR0Cmt/pJXhfjdX2UKGgGR7/BpNbkfcN6aAdLAmgIR0CmuEAggX/HdX2UKGgGR7+lIK+i8FpxaAdLAWgIR0CmuEcGcFyJdX2UKGgGR7/a/wRXfZVXaAdLBGgIR0Cmt84sd1dPdX2UKGgGR7/OkGA08/2TaAdLA2gIR0CmuA+UQkHEdX2UKGgGR7/XWTX8O09haAdLBGgIR0CmuJS0jTrndX2UKGgGR7++yKNyYG+saAdLAmgIR0CmuFkJKJ2udX2UKGgGR7/BtwaR6nivaAdLAmgIR0CmuCDVx0dSdX2UKGgGR7/Kws5GSZBtaAdLA2gIR0Cmt+Zb6guidX2UKGgGR7/EAWi1y/9HaAdLAmgIR0CmuKFQ2uPndX2UKGgGR7/PvVmSQo1DaAdLA2gIR0CmuGk8A7xNdX2UKGgGR7/NI6r/82rGaAdLA2gIR0Cmt/NITXardX2UKGgGR7/XstCiRGMGaAdLBGgIR0CmuDTaK1ohdX2UKGgGR7/RKV6eGwiaaAdLBGgIR0CmuLTqB3A3dX2UKGgGR7/QLi++M6zWaAdLA2gIR0CmuHixu89PdX2UKGgGR7+dUn5SFXaKaAdLAWgIR0CmuDliKBNFdX2UKGgGR7/QqGDcuanaaAdLA2gIR0CmuALJr+HadX2UKGgGR7+8hPj4pMHsaAdLAmgIR0CmuIGyxA0LdX2UKGgGR7+9t52Qnx8VaAdLAmgIR0CmuEKAavRrdX2UKGgGR7/WRGtp22XtaAdLA2gIR0CmuMLKFIuodX2UKGgGR7+4vqTr3TNMaAdLAmgIR0CmuIz0QK8ddX2UKGgGR7/OyY5T6zmfaAdLA2gIR0CmuFHuqm0mdX2UKGgGR7/QDMvAXVLBaAdLA2gIR0CmuNIN/e+FdX2UKGgGR7/dRPoFFDv3aAdLBWgIR0CmuBvQv6CUdX2UKGgGR7+2BSUC7sfJaAdLAmgIR0CmuNronrprdX2UKGgGR7/WaWX1J17qaAdLBGgIR0CmuJ6x5cC6dX2UKGgGR7/RI/JNj9XLaAdLA2gIR0CmuF9sBQvYdX2UKGgGR7+6Y5T6zmfXaAdLAmgIR0CmuCTyz5XVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (696 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.21220327988266946, "std_reward": 0.12461250819579622, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-31T11:26:05.142684"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc9aa88671750d1798fa45545a886db3cd434be37456ccd0f6c0e4a964319b12
3
+ size 2623