Lorius2 commited on
Commit
b411aba
·
1 Parent(s): 4c50d7e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.16 +/- 0.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:463c6911b0141030f7170845c71215d5e0b13dcef7ad20d0a1e4db8aec72f77d
3
+ size 107992
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd410fbaca0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fd410fbd2c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679819368096653916,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkJvVPqZo2TwDmRY/kJvVPqZo2TwDmRY/kJvVPqZo2TwDmRY/kJvVPqZo2TwDmRY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUyuivwrQqz9nJos8vayuP070iD/7z/W+KJBPv0rLLb/25qK/wBTgvo5Cqb4VvYW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQm9U+pmjZPAOZFj8TWSo8XuIYOzwzeDyQm9U+pmjZPAOZFj8TWSo8XuIYOzwzeDyQm9U+pmjZPAOZFj8TWSo8XuIYOzwzeDyQm9U+pmjZPAOZFj8TWSo8XuIYOzwzeDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.41720247 0.02653916 0.5882723 ]\n [0.41720247 0.02653916 0.5882723 ]\n [0.41720247 0.02653916 0.5882723 ]\n [0.41720247 0.02653916 0.5882723 ]]",
60
+ "desired_goal": "[[-1.2669472 1.3422863 0.01698609]\n [ 1.3646466 1.0699556 -0.4801024 ]\n [-0.8107934 -0.6788832 -1.2726734 ]\n [-0.4376583 -0.3305859 -1.0448328 ]]",
61
+ "observation": "[[0.41720247 0.02653916 0.5882723 0.01039721 0.00233283 0.01514893]\n [0.41720247 0.02653916 0.5882723 0.01039721 0.00233283 0.01514893]\n [0.41720247 0.02653916 0.5882723 0.01039721 0.00233283 0.01514893]\n [0.41720247 0.02653916 0.5882723 0.01039721 0.00233283 0.01514893]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEHZvvdEQBz4iKTM+dLOOvYrDWj0xPnM78LUCvjJmyD0Lhz0+x5QDvgT37Dz2rHw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.0584622 0.13190009 0.1749616 ]\n [-0.06967822 0.05340914 0.00371159]\n [-0.12764716 0.09785117 0.18508546]\n [-0.12849723 0.02892638 0.06168839]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOZfiqrJv7b+UhpRSlIwBbJRLMowBdJRHQKgKFuLJjlR1fZQoaAZoCWgPQwiLUkKwql7bv5SGlFKUaBVLMmgWR0CoCdgggX/HdX2UKGgGaAloD0MI8DLDRln/8L+UhpRSlGgVSzJoFkdAqAmXdl/YrnV9lChoBmgJaA9DCLoQqz/C8PG/lIaUUpRoFUsyaBZHQKgJWo4uK4x1fZQoaAZoCWgPQwh6UbtfBXjvv5SGlFKUaBVLMmgWR0CoCysM7U5NdX2UKGgGaAloD0MIHsTOFDov9b+UhpRSlGgVSzJoFkdAqArsGRmseXV9lChoBmgJaA9DCNUiopi8gfi/lIaUUpRoFUsyaBZHQKgKq2Kl54Z1fZQoaAZoCWgPQwj2X+emzTj0v5SGlFKUaBVLMmgWR0CoCm45tFa0dX2UKGgGaAloD0MIzXLZ6Jyf8r+UhpRSlGgVSzJoFkdAqAxW9cry2HV9lChoBmgJaA9DCLjIPV3d8fa/lIaUUpRoFUsyaBZHQKgMGJqqOtJ1fZQoaAZoCWgPQwjE7dCwGLXyv5SGlFKUaBVLMmgWR0CoC9iu+yqudX2UKGgGaAloD0MIIY/gRsrW8r+UhpRSlGgVSzJoFkdAqAucju8brHV9lChoBmgJaA9DCEm+EkiJ3fC/lIaUUpRoFUsyaBZHQKgOD4RmK651fZQoaAZoCWgPQwi2hHzQs9nlv5SGlFKUaBVLMmgWR0CoDdHVf/m1dX2UKGgGaAloD0MI6SrdXWdD9b+UhpRSlGgVSzJoFkdAqA2R28qWknV9lChoBmgJaA9DCP4pVaLsreC/lIaUUpRoFUsyaBZHQKgNVXPJJXh1fZQoaAZoCWgPQwjVlc/yPLjpv5SGlFKUaBVLMmgWR0CoD+oFFDv3dX2UKGgGaAloD0MIe75muWz05L+UhpRSlGgVSzJoFkdAqA+s9+w1SHV9lChoBmgJaA9DCP8G7dXHg/G/lIaUUpRoFUsyaBZHQKgPbNDc/MZ1fZQoaAZoCWgPQwjx9iAE5Ev/v5SGlFKUaBVLMmgWR0CoDzCW3Sa3dX2UKGgGaAloD0MIjL0XX7RH6r+UhpRSlGgVSzJoFkdAqBGnI4lyBHV9lChoBmgJaA9DCFm+LsN/+vC/lIaUUpRoFUsyaBZHQKgRaTB68g91fZQoaAZoCWgPQwgvMgG/RlL0v5SGlFKUaBVLMmgWR0CoESjRtxdZdX2UKGgGaAloD0MI1sdD393K8L+UhpRSlGgVSzJoFkdAqBDsjTrmhnV9lChoBmgJaA9DCJC7CFOUS+6/lIaUUpRoFUsyaBZHQKgTZ1+y7f51fZQoaAZoCWgPQwj0bcFSXcDwv5SGlFKUaBVLMmgWR0CoEykXcgyNdX2UKGgGaAloD0MIr3d/vFft8r+UhpRSlGgVSzJoFkdAqBLpB/qgRXV9lChoBmgJaA9DCIj1Rq0wfei/lIaUUpRoFUsyaBZHQKgSrNIsiB51fZQoaAZoCWgPQwhGJXUCmgjtv5SGlFKUaBVLMmgWR0CoFTG4iHIqdX2UKGgGaAloD0MIARk6dlAJ6r+UhpRSlGgVSzJoFkdAqBTzvRZ2ZHV9lChoBmgJaA9DCOqT3GET2fq/lIaUUpRoFUsyaBZHQKgUtBRhttR1fZQoaAZoCWgPQwhhNZawNkb0v5SGlFKUaBVLMmgWR0CoFHgpBomHdX2UKGgGaAloD0MIwvwVMleG+b+UhpRSlGgVSzJoFkdAqBaFqFh5PnV9lChoBmgJaA9DCN2YnrDEQ/q/lIaUUpRoFUsyaBZHQKgWRr9l2/11fZQoaAZoCWgPQwhSQxuADcj4v5SGlFKUaBVLMmgWR0CoFgX5FgDzdX2UKGgGaAloD0MIFHe8yW/R/L+UhpRSlGgVSzJoFkdAqBXI/FBIF3V9lChoBmgJaA9DCD22ZcBZCvO/lIaUUpRoFUsyaBZHQKgXi66J66d1fZQoaAZoCWgPQwiRm+EGfD7zv5SGlFKUaBVLMmgWR0CoF0y9VWCFdX2UKGgGaAloD0MIcXK/Q1Hg+b+UhpRSlGgVSzJoFkdAqBcMDZDiO3V9lChoBmgJaA9DCB5rRga5C+2/lIaUUpRoFUsyaBZHQKgWzt1IRRN1fZQoaAZoCWgPQwgXuhKB6p/pv5SGlFKUaBVLMmgWR0CoGIkmx+rmdX2UKGgGaAloD0MIyQVn8PfL+r+UhpRSlGgVSzJoFkdAqBhKOo5xR3V9lChoBmgJaA9DCKrU7IFWYPS/lIaUUpRoFUsyaBZHQKgYCW5Yoy91fZQoaAZoCWgPQwiLwi6KHrj4v5SGlFKUaBVLMmgWR0CoF8wrlNlAdX2UKGgGaAloD0MIvqHw2Tq4+r+UhpRSlGgVSzJoFkdAqBmIIWxhUnV9lChoBmgJaA9DCLCSj90Fyu6/lIaUUpRoFUsyaBZHQKgZSRmseXB1fZQoaAZoCWgPQwgZkL3e/XH1v5SGlFKUaBVLMmgWR0CoGQhQ3xWldX2UKGgGaAloD0MIcH1Yb9TK+L+UhpRSlGgVSzJoFkdAqBjLOxB3R3V9lChoBmgJaA9DCPfMkgA19fy/lIaUUpRoFUsyaBZHQKgajNh3JPt1fZQoaAZoCWgPQwhwJqYLsXr6v5SGlFKUaBVLMmgWR0CoGk3pwCKadX2UKGgGaAloD0MINV8lH7tL87+UhpRSlGgVSzJoFkdAqBoM9B8hLXV9lChoBmgJaA9DCJWZ0vpbQvi/lIaUUpRoFUsyaBZHQKgZz/ACW/t1fZQoaAZoCWgPQwhNTBdi9Ufmv5SGlFKUaBVLMmgWR0CoG6D9OymidX2UKGgGaAloD0MIrRVtjnNb/r+UhpRSlGgVSzJoFkdAqBtiFRHf/HV9lChoBmgJaA9DCBHkoISZdvW/lIaUUpRoFUsyaBZHQKgbIT0QK8d1fZQoaAZoCWgPQwi9bhEY69v0v5SGlFKUaBVLMmgWR0CoGuRZEDyOdX2UKGgGaAloD0MIborHRbWI7L+UhpRSlGgVSzJoFkdAqByu2RaHK3V9lChoBmgJaA9DCFde8j/5+/G/lIaUUpRoFUsyaBZHQKgccA8Swnp1fZQoaAZoCWgPQwh24JwRpb3lv5SGlFKUaBVLMmgWR0CoHC91+y7gdX2UKGgGaAloD0MIJEIj2Li+9b+UhpRSlGgVSzJoFkdAqBvyWTot+XV9lChoBmgJaA9DCHFWRE30+ey/lIaUUpRoFUsyaBZHQKgdvfP5YYB1fZQoaAZoCWgPQwjs2XOZmgT2v5SGlFKUaBVLMmgWR0CoHX7yH2ytdX2UKGgGaAloD0MIahZod0gx6L+UhpRSlGgVSzJoFkdAqB0+Q4jrzHV9lChoBmgJaA9DCLCRJAhXAPG/lIaUUpRoFUsyaBZHQKgdASbH6uZ1fZQoaAZoCWgPQwjH9IQlHtDmv5SGlFKUaBVLMmgWR0CoHtgqur6tdX2UKGgGaAloD0MICvfKvFWX97+UhpRSlGgVSzJoFkdAqB6ZKUVzqHV9lChoBmgJaA9DCAvRIXAkEPe/lIaUUpRoFUsyaBZHQKgeWG6f8Mx1fZQoaAZoCWgPQwgzpmCNsyn1v5SGlFKUaBVLMmgWR0CoHhthE0BPdX2UKGgGaAloD0MIY15HHLIB7r+UhpRSlGgVSzJoFkdAqB/oKa5PM3V9lChoBmgJaA9DCDRKl/4lKfW/lIaUUpRoFUsyaBZHQKgfqTwDvE11fZQoaAZoCWgPQwjE0sCPatjkv5SGlFKUaBVLMmgWR0CoH2hq0tyxdX2UKGgGaAloD0MIJxb4im599L+UhpRSlGgVSzJoFkdAqB8rKs+3Y3V9lChoBmgJaA9DCAiOy7ipwfO/lIaUUpRoFUsyaBZHQKgg/aSs8xN1fZQoaAZoCWgPQwjWj03yI37iv5SGlFKUaBVLMmgWR0CoIL7HhjvvdX2UKGgGaAloD0MIuhEWFXG67L+UhpRSlGgVSzJoFkdAqCB9+Vkc0nV9lChoBmgJaA9DCLK61XPSe+y/lIaUUpRoFUsyaBZHQKggQPz4DcN1fZQoaAZoCWgPQwhp4bIKmwHsv5SGlFKUaBVLMmgWR0CoIg3hn8KpdX2UKGgGaAloD0MIA7UYPEy78L+UhpRSlGgVSzJoFkdAqCHO+49X93V9lChoBmgJaA9DCHTRkPEoVfW/lIaUUpRoFUsyaBZHQKghjj9XLeR1fZQoaAZoCWgPQwivP4nPneDnv5SGlFKUaBVLMmgWR0CoIVFHJ9y+dX2UKGgGaAloD0MII4JxcOmY7b+UhpRSlGgVSzJoFkdAqCM/YBeXzHV9lChoBmgJaA9DCL6ItmPqruq/lIaUUpRoFUsyaBZHQKgjAIt16mh1fZQoaAZoCWgPQwgujzUjg1z0v5SGlFKUaBVLMmgWR0CoIsCZWq95dX2UKGgGaAloD0MIPIcyVMVU8b+UhpRSlGgVSzJoFkdAqCKDhm5DqnV9lChoBmgJaA9DCE93nnjOFu6/lIaUUpRoFUsyaBZHQKgkUvugHu91fZQoaAZoCWgPQwguGjIepRL3v5SGlFKUaBVLMmgWR0CoJBRFiKBNdX2UKGgGaAloD0MI6kDWU6sv9b+UhpRSlGgVSzJoFkdAqCPTm+0w8HV9lChoBmgJaA9DCObN4Vrt4ee/lIaUUpRoFUsyaBZHQKgjlpaA4GV1fZQoaAZoCWgPQwgBMQkX8oj0v5SGlFKUaBVLMmgWR0CoJWsqjJuEdX2UKGgGaAloD0MIPGagMv698r+UhpRSlGgVSzJoFkdAqCUsHfMwDnV9lChoBmgJaA9DCJZBtcGJ6PW/lIaUUpRoFUsyaBZHQKgk62gFotd1fZQoaAZoCWgPQwj8pUV9kjvuv5SGlFKUaBVLMmgWR0CoJK5o4+8odX2UKGgGaAloD0MIyTuHMlSF97+UhpRSlGgVSzJoFkdAqCagOQQtjHV9lChoBmgJaA9DCICZ7+Anjuu/lIaUUpRoFUsyaBZHQKgmYVARkEt1fZQoaAZoCWgPQwhhjbPpCOD4v5SGlFKUaBVLMmgWR0CoJiBwEQoTdX2UKGgGaAloD0MIYVJ8fEL25r+UhpRSlGgVSzJoFkdAqCXjhBJI2HV9lChoBmgJaA9DCMIwYMlVLNy/lIaUUpRoFUsyaBZHQKgntQsPJ7t1fZQoaAZoCWgPQwi2TfG4qBbpv5SGlFKUaBVLMmgWR0CoJ3YXoC+2dX2UKGgGaAloD0MIbhlwlpJl7b+UhpRSlGgVSzJoFkdAqCc1WCEpRXV9lChoBmgJaA9DCLhZvFgYYvq/lIaUUpRoFUsyaBZHQKgm+FvAGjd1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c14986e13a5e68280f41e3553e49978d35c37291a23b512d1cb64bf41d8e1f57
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d51917d9649c92ce3a6e3334fab3ae787822c9e40b93f196a0061ea72349d069
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd410fbaca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd410fbd2c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679819368096653916, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkJvVPqZo2TwDmRY/kJvVPqZo2TwDmRY/kJvVPqZo2TwDmRY/kJvVPqZo2TwDmRY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUyuivwrQqz9nJos8vayuP070iD/7z/W+KJBPv0rLLb/25qK/wBTgvo5Cqb4VvYW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQm9U+pmjZPAOZFj8TWSo8XuIYOzwzeDyQm9U+pmjZPAOZFj8TWSo8XuIYOzwzeDyQm9U+pmjZPAOZFj8TWSo8XuIYOzwzeDyQm9U+pmjZPAOZFj8TWSo8XuIYOzwzeDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41720247 0.02653916 0.5882723 ]\n [0.41720247 0.02653916 0.5882723 ]\n [0.41720247 0.02653916 0.5882723 ]\n [0.41720247 0.02653916 0.5882723 ]]", "desired_goal": "[[-1.2669472 1.3422863 0.01698609]\n [ 1.3646466 1.0699556 -0.4801024 ]\n [-0.8107934 -0.6788832 -1.2726734 ]\n [-0.4376583 -0.3305859 -1.0448328 ]]", "observation": "[[0.41720247 0.02653916 0.5882723 0.01039721 0.00233283 0.01514893]\n [0.41720247 0.02653916 0.5882723 0.01039721 0.00233283 0.01514893]\n [0.41720247 0.02653916 0.5882723 0.01039721 0.00233283 0.01514893]\n [0.41720247 0.02653916 0.5882723 0.01039721 0.00233283 0.01514893]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEHZvvdEQBz4iKTM+dLOOvYrDWj0xPnM78LUCvjJmyD0Lhz0+x5QDvgT37Dz2rHw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0584622 0.13190009 0.1749616 ]\n [-0.06967822 0.05340914 0.00371159]\n [-0.12764716 0.09785117 0.18508546]\n [-0.12849723 0.02892638 0.06168839]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOZfiqrJv7b+UhpRSlIwBbJRLMowBdJRHQKgKFuLJjlR1fZQoaAZoCWgPQwiLUkKwql7bv5SGlFKUaBVLMmgWR0CoCdgggX/HdX2UKGgGaAloD0MI8DLDRln/8L+UhpRSlGgVSzJoFkdAqAmXdl/YrnV9lChoBmgJaA9DCLoQqz/C8PG/lIaUUpRoFUsyaBZHQKgJWo4uK4x1fZQoaAZoCWgPQwh6UbtfBXjvv5SGlFKUaBVLMmgWR0CoCysM7U5NdX2UKGgGaAloD0MIHsTOFDov9b+UhpRSlGgVSzJoFkdAqArsGRmseXV9lChoBmgJaA9DCNUiopi8gfi/lIaUUpRoFUsyaBZHQKgKq2Kl54Z1fZQoaAZoCWgPQwj2X+emzTj0v5SGlFKUaBVLMmgWR0CoCm45tFa0dX2UKGgGaAloD0MIzXLZ6Jyf8r+UhpRSlGgVSzJoFkdAqAxW9cry2HV9lChoBmgJaA9DCLjIPV3d8fa/lIaUUpRoFUsyaBZHQKgMGJqqOtJ1fZQoaAZoCWgPQwjE7dCwGLXyv5SGlFKUaBVLMmgWR0CoC9iu+yqudX2UKGgGaAloD0MIIY/gRsrW8r+UhpRSlGgVSzJoFkdAqAucju8brHV9lChoBmgJaA9DCEm+EkiJ3fC/lIaUUpRoFUsyaBZHQKgOD4RmK651fZQoaAZoCWgPQwi2hHzQs9nlv5SGlFKUaBVLMmgWR0CoDdHVf/m1dX2UKGgGaAloD0MI6SrdXWdD9b+UhpRSlGgVSzJoFkdAqA2R28qWknV9lChoBmgJaA9DCP4pVaLsreC/lIaUUpRoFUsyaBZHQKgNVXPJJXh1fZQoaAZoCWgPQwjVlc/yPLjpv5SGlFKUaBVLMmgWR0CoD+oFFDv3dX2UKGgGaAloD0MIe75muWz05L+UhpRSlGgVSzJoFkdAqA+s9+w1SHV9lChoBmgJaA9DCP8G7dXHg/G/lIaUUpRoFUsyaBZHQKgPbNDc/MZ1fZQoaAZoCWgPQwjx9iAE5Ev/v5SGlFKUaBVLMmgWR0CoDzCW3Sa3dX2UKGgGaAloD0MIjL0XX7RH6r+UhpRSlGgVSzJoFkdAqBGnI4lyBHV9lChoBmgJaA9DCFm+LsN/+vC/lIaUUpRoFUsyaBZHQKgRaTB68g91fZQoaAZoCWgPQwgvMgG/RlL0v5SGlFKUaBVLMmgWR0CoESjRtxdZdX2UKGgGaAloD0MI1sdD393K8L+UhpRSlGgVSzJoFkdAqBDsjTrmhnV9lChoBmgJaA9DCJC7CFOUS+6/lIaUUpRoFUsyaBZHQKgTZ1+y7f51fZQoaAZoCWgPQwj0bcFSXcDwv5SGlFKUaBVLMmgWR0CoEykXcgyNdX2UKGgGaAloD0MIr3d/vFft8r+UhpRSlGgVSzJoFkdAqBLpB/qgRXV9lChoBmgJaA9DCIj1Rq0wfei/lIaUUpRoFUsyaBZHQKgSrNIsiB51fZQoaAZoCWgPQwhGJXUCmgjtv5SGlFKUaBVLMmgWR0CoFTG4iHIqdX2UKGgGaAloD0MIARk6dlAJ6r+UhpRSlGgVSzJoFkdAqBTzvRZ2ZHV9lChoBmgJaA9DCOqT3GET2fq/lIaUUpRoFUsyaBZHQKgUtBRhttR1fZQoaAZoCWgPQwhhNZawNkb0v5SGlFKUaBVLMmgWR0CoFHgpBomHdX2UKGgGaAloD0MIwvwVMleG+b+UhpRSlGgVSzJoFkdAqBaFqFh5PnV9lChoBmgJaA9DCN2YnrDEQ/q/lIaUUpRoFUsyaBZHQKgWRr9l2/11fZQoaAZoCWgPQwhSQxuADcj4v5SGlFKUaBVLMmgWR0CoFgX5FgDzdX2UKGgGaAloD0MIFHe8yW/R/L+UhpRSlGgVSzJoFkdAqBXI/FBIF3V9lChoBmgJaA9DCD22ZcBZCvO/lIaUUpRoFUsyaBZHQKgXi66J66d1fZQoaAZoCWgPQwiRm+EGfD7zv5SGlFKUaBVLMmgWR0CoF0y9VWCFdX2UKGgGaAloD0MIcXK/Q1Hg+b+UhpRSlGgVSzJoFkdAqBcMDZDiO3V9lChoBmgJaA9DCB5rRga5C+2/lIaUUpRoFUsyaBZHQKgWzt1IRRN1fZQoaAZoCWgPQwgXuhKB6p/pv5SGlFKUaBVLMmgWR0CoGIkmx+rmdX2UKGgGaAloD0MIyQVn8PfL+r+UhpRSlGgVSzJoFkdAqBhKOo5xR3V9lChoBmgJaA9DCKrU7IFWYPS/lIaUUpRoFUsyaBZHQKgYCW5Yoy91fZQoaAZoCWgPQwiLwi6KHrj4v5SGlFKUaBVLMmgWR0CoF8wrlNlAdX2UKGgGaAloD0MIvqHw2Tq4+r+UhpRSlGgVSzJoFkdAqBmIIWxhUnV9lChoBmgJaA9DCLCSj90Fyu6/lIaUUpRoFUsyaBZHQKgZSRmseXB1fZQoaAZoCWgPQwgZkL3e/XH1v5SGlFKUaBVLMmgWR0CoGQhQ3xWldX2UKGgGaAloD0MIcH1Yb9TK+L+UhpRSlGgVSzJoFkdAqBjLOxB3R3V9lChoBmgJaA9DCPfMkgA19fy/lIaUUpRoFUsyaBZHQKgajNh3JPt1fZQoaAZoCWgPQwhwJqYLsXr6v5SGlFKUaBVLMmgWR0CoGk3pwCKadX2UKGgGaAloD0MINV8lH7tL87+UhpRSlGgVSzJoFkdAqBoM9B8hLXV9lChoBmgJaA9DCJWZ0vpbQvi/lIaUUpRoFUsyaBZHQKgZz/ACW/t1fZQoaAZoCWgPQwhNTBdi9Ufmv5SGlFKUaBVLMmgWR0CoG6D9OymidX2UKGgGaAloD0MIrRVtjnNb/r+UhpRSlGgVSzJoFkdAqBtiFRHf/HV9lChoBmgJaA9DCBHkoISZdvW/lIaUUpRoFUsyaBZHQKgbIT0QK8d1fZQoaAZoCWgPQwi9bhEY69v0v5SGlFKUaBVLMmgWR0CoGuRZEDyOdX2UKGgGaAloD0MIborHRbWI7L+UhpRSlGgVSzJoFkdAqByu2RaHK3V9lChoBmgJaA9DCFde8j/5+/G/lIaUUpRoFUsyaBZHQKgccA8Swnp1fZQoaAZoCWgPQwh24JwRpb3lv5SGlFKUaBVLMmgWR0CoHC91+y7gdX2UKGgGaAloD0MIJEIj2Li+9b+UhpRSlGgVSzJoFkdAqBvyWTot+XV9lChoBmgJaA9DCHFWRE30+ey/lIaUUpRoFUsyaBZHQKgdvfP5YYB1fZQoaAZoCWgPQwjs2XOZmgT2v5SGlFKUaBVLMmgWR0CoHX7yH2ytdX2UKGgGaAloD0MIahZod0gx6L+UhpRSlGgVSzJoFkdAqB0+Q4jrzHV9lChoBmgJaA9DCLCRJAhXAPG/lIaUUpRoFUsyaBZHQKgdASbH6uZ1fZQoaAZoCWgPQwjH9IQlHtDmv5SGlFKUaBVLMmgWR0CoHtgqur6tdX2UKGgGaAloD0MICvfKvFWX97+UhpRSlGgVSzJoFkdAqB6ZKUVzqHV9lChoBmgJaA9DCAvRIXAkEPe/lIaUUpRoFUsyaBZHQKgeWG6f8Mx1fZQoaAZoCWgPQwgzpmCNsyn1v5SGlFKUaBVLMmgWR0CoHhthE0BPdX2UKGgGaAloD0MIY15HHLIB7r+UhpRSlGgVSzJoFkdAqB/oKa5PM3V9lChoBmgJaA9DCDRKl/4lKfW/lIaUUpRoFUsyaBZHQKgfqTwDvE11fZQoaAZoCWgPQwjE0sCPatjkv5SGlFKUaBVLMmgWR0CoH2hq0tyxdX2UKGgGaAloD0MIJxb4im599L+UhpRSlGgVSzJoFkdAqB8rKs+3Y3V9lChoBmgJaA9DCAiOy7ipwfO/lIaUUpRoFUsyaBZHQKgg/aSs8xN1fZQoaAZoCWgPQwjWj03yI37iv5SGlFKUaBVLMmgWR0CoIL7HhjvvdX2UKGgGaAloD0MIuhEWFXG67L+UhpRSlGgVSzJoFkdAqCB9+Vkc0nV9lChoBmgJaA9DCLK61XPSe+y/lIaUUpRoFUsyaBZHQKggQPz4DcN1fZQoaAZoCWgPQwhp4bIKmwHsv5SGlFKUaBVLMmgWR0CoIg3hn8KpdX2UKGgGaAloD0MIA7UYPEy78L+UhpRSlGgVSzJoFkdAqCHO+49X93V9lChoBmgJaA9DCHTRkPEoVfW/lIaUUpRoFUsyaBZHQKghjj9XLeR1fZQoaAZoCWgPQwivP4nPneDnv5SGlFKUaBVLMmgWR0CoIVFHJ9y+dX2UKGgGaAloD0MII4JxcOmY7b+UhpRSlGgVSzJoFkdAqCM/YBeXzHV9lChoBmgJaA9DCL6ItmPqruq/lIaUUpRoFUsyaBZHQKgjAIt16mh1fZQoaAZoCWgPQwgujzUjg1z0v5SGlFKUaBVLMmgWR0CoIsCZWq95dX2UKGgGaAloD0MIPIcyVMVU8b+UhpRSlGgVSzJoFkdAqCKDhm5DqnV9lChoBmgJaA9DCE93nnjOFu6/lIaUUpRoFUsyaBZHQKgkUvugHu91fZQoaAZoCWgPQwguGjIepRL3v5SGlFKUaBVLMmgWR0CoJBRFiKBNdX2UKGgGaAloD0MI6kDWU6sv9b+UhpRSlGgVSzJoFkdAqCPTm+0w8HV9lChoBmgJaA9DCObN4Vrt4ee/lIaUUpRoFUsyaBZHQKgjlpaA4GV1fZQoaAZoCWgPQwgBMQkX8oj0v5SGlFKUaBVLMmgWR0CoJWsqjJuEdX2UKGgGaAloD0MIPGagMv698r+UhpRSlGgVSzJoFkdAqCUsHfMwDnV9lChoBmgJaA9DCJZBtcGJ6PW/lIaUUpRoFUsyaBZHQKgk62gFotd1fZQoaAZoCWgPQwj8pUV9kjvuv5SGlFKUaBVLMmgWR0CoJK5o4+8odX2UKGgGaAloD0MIyTuHMlSF97+UhpRSlGgVSzJoFkdAqCagOQQtjHV9lChoBmgJaA9DCICZ7+Anjuu/lIaUUpRoFUsyaBZHQKgmYVARkEt1fZQoaAZoCWgPQwhhjbPpCOD4v5SGlFKUaBVLMmgWR0CoJiBwEQoTdX2UKGgGaAloD0MIYVJ8fEL25r+UhpRSlGgVSzJoFkdAqCXjhBJI2HV9lChoBmgJaA9DCMIwYMlVLNy/lIaUUpRoFUsyaBZHQKgntQsPJ7t1fZQoaAZoCWgPQwi2TfG4qBbpv5SGlFKUaBVLMmgWR0CoJ3YXoC+2dX2UKGgGaAloD0MIbhlwlpJl7b+UhpRSlGgVSzJoFkdAqCc1WCEpRXV9lChoBmgJaA9DCLhZvFgYYvq/lIaUUpRoFUsyaBZHQKgm+FvAGjd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (393 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.159146059723571, "std_reward": 0.4658184491961732, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-26T09:21:33.421607"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55afcd3e75c4c2c0b3135df43b4e97495315f53e206fca77a39088be72c92687
3
+ size 3056