bruel commited on
Commit
1c1a4bb
·
verified ·
1 Parent(s): 9947e6d

task023_cosmosqa_question_generation

Browse files
Files changed (1) hide show
  1. README.md +23 -13
README.md CHANGED
@@ -1,9 +1,11 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
@@ -15,22 +17,22 @@ tags: []
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
  - **Funded by [optional]:** [More Information Needed]
22
  - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
@@ -79,7 +81,7 @@ Use the code below to get started with the model.
79
 
80
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
@@ -174,7 +176,15 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
 
178
 
179
  **APA:**
180
 
 
1
  ---
2
+ language: en
3
+ license: mit
4
+ library_name: pytorch
5
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
6
  ---
7
 
8
+ # Model Card for Mistral-7B-Instruct-v0.2-4b-r16-task023
9
 
10
  <!-- Provide a quick summary of what the model is/does. -->
11
 
 
17
 
18
  <!-- Provide a longer summary of what this model is. -->
19
 
20
+ LoRA trained on task023_cosmosqa_question_generation
21
 
22
+ - **Developed by:** bruel
23
  - **Funded by [optional]:** [More Information Needed]
24
  - **Shared by [optional]:** [More Information Needed]
25
+ - **Model type:** LoRA
26
+ - **Language(s) (NLP):** en
27
+ - **License:** mit
28
+ - **Finetuned from model [optional]:** mistralai/Mistral-7B-Instruct-v0.2
29
 
30
  ### Model Sources [optional]
31
 
32
  <!-- Provide the basic links for the model. -->
33
 
34
+ - **Repository:** https://github.com/bruel-gabrielsson
35
+ - **Paper [optional]:** "Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead" (2024), Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin and Justin Solomon
36
  - **Demo [optional]:** [More Information Needed]
37
 
38
  ## Uses
 
81
 
82
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
 
84
+ https://huggingface.co/datasets/Lots-of-LoRAs/task023_cosmosqa_question_generation sourced from https://github.com/allenai/natural-instructions
85
 
86
  ### Training Procedure
87
 
 
176
 
177
  **BibTeX:**
178
 
179
+ @misc{brüelgabrielsson2024compressserveservingthousands,
180
+ title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
181
+ author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
182
+ year={2024},
183
+ eprint={2407.00066},
184
+ archivePrefix={arXiv},
185
+ primaryClass={cs.DC},
186
+ url={https://arxiv.org/abs/2407.00066},
187
+ }
188
 
189
  **APA:**
190