File size: 1,032 Bytes
aa3ec1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
---
license: mit
base_model:
- Ultralytics/YOLOv8
pipeline_tag: object-detection
---
# Overview
This repository hosts a YOLOv8l model trained on the ArxivFormula (https://github.com/microsoft/ArxivFormula) dataset, which focuses on the detection of mathematical expressions in scientific papers.
# Training Data:
- Source: ArxivFormula (https://github.com/microsoft/ArxivFormula)
- Classes: 6 classes (InlineFormula, DisplayedFormulaLine, FormulaNumber, DisplayedFormulaBlock, Table, Figure)
Pages: ~600,000 images of document pages
# Model:
- YOLOv8l (https://github.com/ultralytics/ultralytics)
- epochs = 100
- imgsz = 640
- optimizer = 'AdamW'
- lr0 = 0.0001
- augment = True
# Usage
## Example Code
```
from ultralytics import YOLO
import pathlib
# Sample images
img_list = ['sample1.png', 'sample2.png', 'sample3.png']
# Load the document segmentation model
model = YOLO('arxivFormula_YOLOv8l.pt')
# Process the images
results = model(source=img_list, save=True, show_labels=True, show_conf=True, show_boxes=True)
``` |