Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1473.14 +/- 369.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80eba1034c708772e120c1572c0ab9179b0a6d5aa3815a991971585891a2bdbd
|
3 |
+
size 129261
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7b18afe50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7b18afee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7b18aff70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7b18b4040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe7b18b40d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe7b18b4160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe7b18b41f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7b18b4280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe7b18b4310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7b18b43a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7b18b4430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7b18b44c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe7b18b1a00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1680355295566408909,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAasCUB5CjQ/XTxqP++OHMANgDc/1IIewEAS8L6+QBU/7PnyvyMzSjxIis6+gxA3QFTc7r+c/cg82m/wP/zxkcBYyPI+geVSQOiW671NpobAHl0MP28SZUDPbn68AUleQML8pL/DP1zARPnav3/nQr/cYIq+8VNNv4V68r58Az+/e/3iPngT+T5ZkzM+novlPnfw87//guM9MruQvlj9qT+EkcS/BcYQQMEhBb8bQno/sLRov6oYqz+SFZc+201GvxZKxj+cyCBAED2SPp0ClT7C/KS/6caUPr+kFT+hH6g/FVQfvgBrtT7+Yko/Y+ERQPYs0T6AysY/hi4bv9dloT1y5i2//0enPwhsIb0uXq4/ggg3vYbhtT9LMRU/eWPvPJpQHz8Nyk+/mGJdv4CT8j7Dr9Q/ABWcv8VeGz+L5MQ/85tGP+nGlD6/pBU/f+dCv3JRlj++fmK/AnEkv7FI371fRZi/HVaKPa/bQ7+V4Ci/gyKDPwmm9b5zv5w/yFEXv8NP97/qeiPAR48pvwUl4L9+Nba/Fj5Dv7A62j00iqY/Eh3LvzaPJDwl/IC/ee1OvvObRj/pxpQ+v6QVP3/nQr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADHUi02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcIhsvQAAAACxduO/AAAAAELxuj0AAAAA/YziPwAAAADtOdk9AAAAAAv8/j8AAAAAVYoMPgAAAADWCe6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2fgsNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEKDsL0AAAAAC9v0vwAAAABFK0e9AAAAAIO09T8AAAAAApkFvQAAAADIh+8/AAAAAHrnprwAAAAAiR7fvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGdAPzcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAIRM69AAAAAEo66L8AAAAAXJ8GPgAAAAAGyPI/AAAAAMsiCD4AAAAA9a/7PwAAAABYjAO+AAAAAJZm7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5lai0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9GzGPQAAAAA4TNm/AAAAACJgMT0AAAAAzHr8PwAAAAB+Jec9AAAAAPmp6D8AAAAApteSPQAAAABoQ9q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKCyOtZmqYKMAWyUTegDjAF0lEdAqsFk3XI2fnV9lChoBkdAnWfGWQfZEmgHTegDaAhHQKrG6YSg5BF1fZQoaAZHQKBIuNH6MzdoB03oA2gIR0CqyHo3aSLZdX2UKGgGR0CfcwL5hz/7aAdN6ANoCEdAqsmcauOjqXV9lChoBkdAna3NX5nDi2gHTegDaAhHQKrQxyEL6UJ1fZQoaAZHQJ1Nh7PY4AFoB03oA2gIR0Cq1dYZl4C7dX2UKGgGR0CfB27nPmgbaAdN6ANoCEdAqtb4IMSbpnV9lChoBkdAnczL7CSA6WgHTegDaAhHQKrXvkWhysF1fZQoaAZHQJrqMJswco9oB03oA2gIR0Cq3Ndp7CzkdX2UKGgGR0CdzuL/jsD5aAdN6ANoCEdAquHcR8MNMHV9lChoBkdAn92osZpBX2gHTegDaAhHQKri/J1aGHp1fZQoaAZHQJ1k9mmLtNVoB03oA2gIR0Cq4/xJEpiJdX2UKGgGR0CZMoE7nxJ/aAdN6ANoCEdAquupccENfHV9lChoBkdAnAaruYx+KGgHTegDaAhHQKrxRBRhttR1fZQoaAZHQJ2SY+1SflJoB03oA2gIR0Cq8l+RHPNWdX2UKGgGR0CeHSftx+8XaAdN6ANoCEdAqvMh0EHMU3V9lChoBkdAlpqBPwd8zGgHTegDaAhHQKr4Pw4sEq51fZQoaAZHQJ0ReEGqxTtoB03oA2gIR0Cq/UbGWD6FdX2UKGgGR0Ce16Z39rGjaAdN6ANoCEdAqv5nNcGC7XV9lChoBkdAncH0rTYukGgHTegDaAhHQKr/NXuE25x1fZQoaAZHQJqf8zHjp9toB03oA2gIR0CrBbdsabWmdX2UKGgGR0CcJ1yrxRVIaAdN6ANoCEdAqwydrRBu43V9lChoBkdAmmcoigTRIGgHTegDaAhHQKsN2Jb+tKZ1fZQoaAZHQJubKlMyrPtoB03oA2gIR0CrDq0MXrMUdX2UKGgGR8AwS3wTdtVJaAdL/2gIR0CrD9dz4k/sdX2UKGgGR0CbsnaNuLrHaAdN6ANoCEdAqxPRP2wmmnV9lChoBkdAmdwZyQxN7GgHTegDaAhHQKsZ66pYLb51fZQoaAZHQJpjWtV7x/doB03oA2gIR0CrGrLHdXT3dX2UKGgGR0CbO8qAz544aAdN6ANoCEdAqxvj2vjfenV9lChoBkdAmW9spkPMCGgHTegDaAhHQKsgLbeuV5d1fZQoaAZHQJnu7n0TURZoB03oA2gIR0CrKYUZNwirdX2UKGgGR0CZ4fKwY+B6aAdN6ANoCEdAqypP0RODa3V9lChoBkdAmWdsCcPOIWgHTegDaAhHQKsrgWSlnAZ1fZQoaAZHQJvlwK2KEWZoB03oA2gIR0CrL2tUOuq4dX2UKGgGR0Ccb4JMQEpzaAdN6ANoCEdAqzWgPEsJ6nV9lChoBkdAnMZHYlIEsGgHTegDaAhHQKs2YO2AoXt1fZQoaAZHQJm4EGhVU+9oB03oA2gIR0CrN5XEqDsddX2UKGgGR0CefAaLn9vTaAdN6ANoCEdAqzuRcs189nV9lChoBkdAnFLDXWe6I2gHTegDaAhHQKtD0T/yXld1fZQoaAZHQJ6A3bwjMV1oB03oA2gIR0CrRQAEEC/5dX2UKGgGR0Cc6tpaRp1zaAdN6ANoCEdAq0bFbRneznV9lChoBkdAnZ4LvCuU2WgHTegDaAhHQKtKx7Qb+991fZQoaAZHQJ3IW8ujASFoB03oA2gIR0CrUNakIomYdX2UKGgGR0CcKv/W1+iKaAdN6ANoCEdAq1GdNnGsFXV9lChoBkdAnYD4x1xKhGgHTegDaAhHQKtSxALy+Yd1fZQoaAZHQJwnskMTewdoB03oA2gIR0CrV+aAOJ+EdX2UKGgGR0Cc7vSH/LkkaAdN6ANoCEdAq2HXwkPcz3V9lChoBkdAm7ZrWI42j2gHTegDaAhHQKtjEml67d11fZQoaAZHQJm95UWEbo9oB03oA2gIR0CrZOuDJ2dNdX2UKGgGR0CbURexwAEMaAdN6ANoCEdAq2mUmICU5nV9lChoBkdAno9znzQNTmgHTegDaAhHQKtvzzzVc2R1fZQoaAZHQJ77lNSIgvFoB03oA2gIR0CrcJlLnLaFdX2UKGgGR0CfKV4NZvDQaAdN6ANoCEdAq3HS4tpVTHV9lChoBkdAn+NQ7PppvmgHTegDaAhHQKt2AJvYODt1fZQoaAZHQKCMIUA1ejVoB03oA2gIR0CrfNVEd/8VdX2UKGgGR0CgOwicf/3naAdN6ANoCEdAq33v/R3NcHV9lChoBkdAnb9h2OhkAmgHTegDaAhHQKt/rxrBTGZ1fZQoaAZHQJ/W3Dm8ujBoB03oA2gIR0CrhWdalk6LdX2UKGgGR0CdM5rq+rU9aAdN6ANoCEdAq4tzg/C66XV9lChoBkdAn1ifO6d1+2gHTegDaAhHQKuMNqzJIUd1fZQoaAZHQJ5E3VpbliloB03oA2gIR0CrjXPppvgndX2UKGgGR0CbF7xvNu+AaAdN6ANoCEdAq5FrbvgFYHV9lChoBkdAmEjP863iJmgHTegDaAhHQKuXk0LMLWt1fZQoaAZHQJkq8Q/X5FhoB03oA2gIR0CrmFd6sySFdX2UKGgGR0CL4zxlxwQ2aAdN6ANoCEdAq5nY5tFa0XV9lChoBkdAmOhrRa5f+mgHTegDaAhHQKuf3vFWGRF1fZQoaAZHQJwra7+T/yZoB03oA2gIR0CrpwbtJFspdX2UKGgGR0CaOfnWrfcfaAdN6ANoCEdAq6fMKPXCj3V9lChoBkdAmwC5RTCLuWgHTegDaAhHQKupAdZq20B1fZQoaAZHQJtNF+PRzBBoB03oA2gIR0CrrPoCdSVGdX2UKGgGR0CaUtP1tfoiaAdN6ANoCEdAq7Mn1lGwzXV9lChoBkdAmyZEaZQYUGgHTegDaAhHQKuz8F9roGJ1fZQoaAZHQJgOfYUWVNZoB03oA2gIR0CrtRkpZwGXdX2UKGgGR0CaaeIiC8ODaAdN6ANoCEdAq7oAysS00HV9lChoBkdAmg2Lt3OfNGgHTegDaAhHQKvCY2RaHKx1fZQoaAZHQJoYt2TxG2FoB03oA2gIR0CrwzIqLCN0dX2UKGgGR0CZ8TYRujynaAdN6ANoCEdAq8RXsqril3V9lChoBkdAmtTfbfxc3WgHTegDaAhHQKvIRspobn51fZQoaAZHQJiUKWJJoTRoB03oA2gIR0CrzoUwSJ0odX2UKGgGR0CZQOMWXTmXaAdN6ANoCEdAq89SS3b213V9lChoBkdAmnh1vybx3GgHTegDaAhHQKvQcJswco91fZQoaAZHQJVRPyDqW1NoB03oA2gIR0Cr1GGtp22YdX2UKGgGR0CYKRVf/m1ZaAdN6ANoCEdAq910g2ZRbnV9lChoBkdAmbYMHWz4UWgHTegDaAhHQKvesnOSntR1fZQoaAZHQJgsh9oexOdoB03oA2gIR0Cr397y6MBIdX2UKGgGR0CYKH3+MqBmaAdN6ANoCEdAq+PWmR/3FnV9lChoBkdAmksP3SKFZmgHTegDaAhHQKvp6HpKSPl1fZQoaAZHQJufpXCCSRtoB03oA2gIR0Cr6ql6Rhc8dX2UKGgGR0CZ+cKcNH6NaAdN6ANoCEdAq+vN6/qPfnV9lChoBkdAnQQKAWi1zGgHTegDaAhHQKvvrMUypJh1fZQoaAZHQJyF2VPepGZoB03oA2gIR0Cr9zkUbkwOdX2UKGgGR0CbfKl7dBSlaAdN6ANoCEdAq/hwtQKrrHV9lChoBkdAnM/PoFFDv2gHTegDaAhHQKv6Ui9qUNd1fZQoaAZHQJ48VyCFsYVoB03oA2gIR0Cr/zjtG/etdX2UKGgGR0CeNM4zabnYaAdN6ANoCEdArAVoBkqc3HV9lChoBkdAm70zGkvboWgHTegDaAhHQKwGPjvNNah1fZQoaAZHQJ0OgewLVnVoB03oA2gIR0CsB3yI55qudX2UKGgGR0CbO3E5hjOLaAdN6ANoCEdArAt98kUsWnV9lChoBkdAm76Y9kjHGWgHTegDaAhHQKwSNsQd0aJ1fZQoaAZHQJ2FSrn1WbRoB03oA2gIR0CsE2OuzQeFdWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd7b02a7b5c50d86925d1d4d4af82916cd3543a64ff45c2346a9d4c51fa391ef
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5400d0b4eba5cab0f39dbc7b2f8c5e06978e93bfffbc4702163840a266109d5d
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7b18afe50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7b18afee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7b18aff70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7b18b4040>", "_build": "<function ActorCriticPolicy._build at 0x7fe7b18b40d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe7b18b4160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe7b18b41f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7b18b4280>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe7b18b4310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7b18b43a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7b18b4430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7b18b44c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe7b18b1a00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680355295566408909, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAasCUB5CjQ/XTxqP++OHMANgDc/1IIewEAS8L6+QBU/7PnyvyMzSjxIis6+gxA3QFTc7r+c/cg82m/wP/zxkcBYyPI+geVSQOiW671NpobAHl0MP28SZUDPbn68AUleQML8pL/DP1zARPnav3/nQr/cYIq+8VNNv4V68r58Az+/e/3iPngT+T5ZkzM+novlPnfw87//guM9MruQvlj9qT+EkcS/BcYQQMEhBb8bQno/sLRov6oYqz+SFZc+201GvxZKxj+cyCBAED2SPp0ClT7C/KS/6caUPr+kFT+hH6g/FVQfvgBrtT7+Yko/Y+ERQPYs0T6AysY/hi4bv9dloT1y5i2//0enPwhsIb0uXq4/ggg3vYbhtT9LMRU/eWPvPJpQHz8Nyk+/mGJdv4CT8j7Dr9Q/ABWcv8VeGz+L5MQ/85tGP+nGlD6/pBU/f+dCv3JRlj++fmK/AnEkv7FI371fRZi/HVaKPa/bQ7+V4Ci/gyKDPwmm9b5zv5w/yFEXv8NP97/qeiPAR48pvwUl4L9+Nba/Fj5Dv7A62j00iqY/Eh3LvzaPJDwl/IC/ee1OvvObRj/pxpQ+v6QVP3/nQr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADHUi02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcIhsvQAAAACxduO/AAAAAELxuj0AAAAA/YziPwAAAADtOdk9AAAAAAv8/j8AAAAAVYoMPgAAAADWCe6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2fgsNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEKDsL0AAAAAC9v0vwAAAABFK0e9AAAAAIO09T8AAAAAApkFvQAAAADIh+8/AAAAAHrnprwAAAAAiR7fvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGdAPzcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAIRM69AAAAAEo66L8AAAAAXJ8GPgAAAAAGyPI/AAAAAMsiCD4AAAAA9a/7PwAAAABYjAO+AAAAAJZm7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5lai0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9GzGPQAAAAA4TNm/AAAAACJgMT0AAAAAzHr8PwAAAAB+Jec9AAAAAPmp6D8AAAAApteSPQAAAABoQ9q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKCyOtZmqYKMAWyUTegDjAF0lEdAqsFk3XI2fnV9lChoBkdAnWfGWQfZEmgHTegDaAhHQKrG6YSg5BF1fZQoaAZHQKBIuNH6MzdoB03oA2gIR0CqyHo3aSLZdX2UKGgGR0CfcwL5hz/7aAdN6ANoCEdAqsmcauOjqXV9lChoBkdAna3NX5nDi2gHTegDaAhHQKrQxyEL6UJ1fZQoaAZHQJ1Nh7PY4AFoB03oA2gIR0Cq1dYZl4C7dX2UKGgGR0CfB27nPmgbaAdN6ANoCEdAqtb4IMSbpnV9lChoBkdAnczL7CSA6WgHTegDaAhHQKrXvkWhysF1fZQoaAZHQJrqMJswco9oB03oA2gIR0Cq3Ndp7CzkdX2UKGgGR0CdzuL/jsD5aAdN6ANoCEdAquHcR8MNMHV9lChoBkdAn92osZpBX2gHTegDaAhHQKri/J1aGHp1fZQoaAZHQJ1k9mmLtNVoB03oA2gIR0Cq4/xJEpiJdX2UKGgGR0CZMoE7nxJ/aAdN6ANoCEdAquupccENfHV9lChoBkdAnAaruYx+KGgHTegDaAhHQKrxRBRhttR1fZQoaAZHQJ2SY+1SflJoB03oA2gIR0Cq8l+RHPNWdX2UKGgGR0CeHSftx+8XaAdN6ANoCEdAqvMh0EHMU3V9lChoBkdAlpqBPwd8zGgHTegDaAhHQKr4Pw4sEq51fZQoaAZHQJ0ReEGqxTtoB03oA2gIR0Cq/UbGWD6FdX2UKGgGR0Ce16Z39rGjaAdN6ANoCEdAqv5nNcGC7XV9lChoBkdAncH0rTYukGgHTegDaAhHQKr/NXuE25x1fZQoaAZHQJqf8zHjp9toB03oA2gIR0CrBbdsabWmdX2UKGgGR0CcJ1yrxRVIaAdN6ANoCEdAqwydrRBu43V9lChoBkdAmmcoigTRIGgHTegDaAhHQKsN2Jb+tKZ1fZQoaAZHQJubKlMyrPtoB03oA2gIR0CrDq0MXrMUdX2UKGgGR8AwS3wTdtVJaAdL/2gIR0CrD9dz4k/sdX2UKGgGR0CbsnaNuLrHaAdN6ANoCEdAqxPRP2wmmnV9lChoBkdAmdwZyQxN7GgHTegDaAhHQKsZ66pYLb51fZQoaAZHQJpjWtV7x/doB03oA2gIR0CrGrLHdXT3dX2UKGgGR0CbO8qAz544aAdN6ANoCEdAqxvj2vjfenV9lChoBkdAmW9spkPMCGgHTegDaAhHQKsgLbeuV5d1fZQoaAZHQJnu7n0TURZoB03oA2gIR0CrKYUZNwirdX2UKGgGR0CZ4fKwY+B6aAdN6ANoCEdAqypP0RODa3V9lChoBkdAmWdsCcPOIWgHTegDaAhHQKsrgWSlnAZ1fZQoaAZHQJvlwK2KEWZoB03oA2gIR0CrL2tUOuq4dX2UKGgGR0Ccb4JMQEpzaAdN6ANoCEdAqzWgPEsJ6nV9lChoBkdAnMZHYlIEsGgHTegDaAhHQKs2YO2AoXt1fZQoaAZHQJm4EGhVU+9oB03oA2gIR0CrN5XEqDsddX2UKGgGR0CefAaLn9vTaAdN6ANoCEdAqzuRcs189nV9lChoBkdAnFLDXWe6I2gHTegDaAhHQKtD0T/yXld1fZQoaAZHQJ6A3bwjMV1oB03oA2gIR0CrRQAEEC/5dX2UKGgGR0Cc6tpaRp1zaAdN6ANoCEdAq0bFbRneznV9lChoBkdAnZ4LvCuU2WgHTegDaAhHQKtKx7Qb+991fZQoaAZHQJ3IW8ujASFoB03oA2gIR0CrUNakIomYdX2UKGgGR0CcKv/W1+iKaAdN6ANoCEdAq1GdNnGsFXV9lChoBkdAnYD4x1xKhGgHTegDaAhHQKtSxALy+Yd1fZQoaAZHQJwnskMTewdoB03oA2gIR0CrV+aAOJ+EdX2UKGgGR0Cc7vSH/LkkaAdN6ANoCEdAq2HXwkPcz3V9lChoBkdAm7ZrWI42j2gHTegDaAhHQKtjEml67d11fZQoaAZHQJm95UWEbo9oB03oA2gIR0CrZOuDJ2dNdX2UKGgGR0CbURexwAEMaAdN6ANoCEdAq2mUmICU5nV9lChoBkdAno9znzQNTmgHTegDaAhHQKtvzzzVc2R1fZQoaAZHQJ77lNSIgvFoB03oA2gIR0CrcJlLnLaFdX2UKGgGR0CfKV4NZvDQaAdN6ANoCEdAq3HS4tpVTHV9lChoBkdAn+NQ7PppvmgHTegDaAhHQKt2AJvYODt1fZQoaAZHQKCMIUA1ejVoB03oA2gIR0CrfNVEd/8VdX2UKGgGR0CgOwicf/3naAdN6ANoCEdAq33v/R3NcHV9lChoBkdAnb9h2OhkAmgHTegDaAhHQKt/rxrBTGZ1fZQoaAZHQJ/W3Dm8ujBoB03oA2gIR0CrhWdalk6LdX2UKGgGR0CdM5rq+rU9aAdN6ANoCEdAq4tzg/C66XV9lChoBkdAn1ifO6d1+2gHTegDaAhHQKuMNqzJIUd1fZQoaAZHQJ5E3VpbliloB03oA2gIR0CrjXPppvgndX2UKGgGR0CbF7xvNu+AaAdN6ANoCEdAq5FrbvgFYHV9lChoBkdAmEjP863iJmgHTegDaAhHQKuXk0LMLWt1fZQoaAZHQJkq8Q/X5FhoB03oA2gIR0CrmFd6sySFdX2UKGgGR0CL4zxlxwQ2aAdN6ANoCEdAq5nY5tFa0XV9lChoBkdAmOhrRa5f+mgHTegDaAhHQKuf3vFWGRF1fZQoaAZHQJwra7+T/yZoB03oA2gIR0CrpwbtJFspdX2UKGgGR0CaOfnWrfcfaAdN6ANoCEdAq6fMKPXCj3V9lChoBkdAmwC5RTCLuWgHTegDaAhHQKupAdZq20B1fZQoaAZHQJtNF+PRzBBoB03oA2gIR0CrrPoCdSVGdX2UKGgGR0CaUtP1tfoiaAdN6ANoCEdAq7Mn1lGwzXV9lChoBkdAmyZEaZQYUGgHTegDaAhHQKuz8F9roGJ1fZQoaAZHQJgOfYUWVNZoB03oA2gIR0CrtRkpZwGXdX2UKGgGR0CaaeIiC8ODaAdN6ANoCEdAq7oAysS00HV9lChoBkdAmg2Lt3OfNGgHTegDaAhHQKvCY2RaHKx1fZQoaAZHQJoYt2TxG2FoB03oA2gIR0CrwzIqLCN0dX2UKGgGR0CZ8TYRujynaAdN6ANoCEdAq8RXsqril3V9lChoBkdAmtTfbfxc3WgHTegDaAhHQKvIRspobn51fZQoaAZHQJiUKWJJoTRoB03oA2gIR0CrzoUwSJ0odX2UKGgGR0CZQOMWXTmXaAdN6ANoCEdAq89SS3b213V9lChoBkdAmnh1vybx3GgHTegDaAhHQKvQcJswco91fZQoaAZHQJVRPyDqW1NoB03oA2gIR0Cr1GGtp22YdX2UKGgGR0CYKRVf/m1ZaAdN6ANoCEdAq910g2ZRbnV9lChoBkdAmbYMHWz4UWgHTegDaAhHQKvesnOSntR1fZQoaAZHQJgsh9oexOdoB03oA2gIR0Cr397y6MBIdX2UKGgGR0CYKH3+MqBmaAdN6ANoCEdAq+PWmR/3FnV9lChoBkdAmksP3SKFZmgHTegDaAhHQKvp6HpKSPl1fZQoaAZHQJufpXCCSRtoB03oA2gIR0Cr6ql6Rhc8dX2UKGgGR0CZ+cKcNH6NaAdN6ANoCEdAq+vN6/qPfnV9lChoBkdAnQQKAWi1zGgHTegDaAhHQKvvrMUypJh1fZQoaAZHQJyF2VPepGZoB03oA2gIR0Cr9zkUbkwOdX2UKGgGR0CbfKl7dBSlaAdN6ANoCEdAq/hwtQKrrHV9lChoBkdAnM/PoFFDv2gHTegDaAhHQKv6Ui9qUNd1fZQoaAZHQJ48VyCFsYVoB03oA2gIR0Cr/zjtG/etdX2UKGgGR0CeNM4zabnYaAdN6ANoCEdArAVoBkqc3HV9lChoBkdAm70zGkvboWgHTegDaAhHQKwGPjvNNah1fZQoaAZHQJ0OgewLVnVoB03oA2gIR0CsB3yI55qudX2UKGgGR0CbO3E5hjOLaAdN6ANoCEdArAt98kUsWnV9lChoBkdAm76Y9kjHGWgHTegDaAhHQKwSNsQd0aJ1fZQoaAZHQJ2FSrn1WbRoB03oA2gIR0CsE2OuzQeFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f54bf505bf62cd6d56a3f69a8bd6cb703c02b929767fa5467cdcbb0bca6e3d0c
|
3 |
+
size 1234953
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1473.1389532035914, "std_reward": 369.7523045864614, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-01T14:22:34.898802"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ba9f4554b21b62e85f4789160c78b3726cad6960d1869a3b3ed3fb6fb07c956
|
3 |
+
size 2136
|