File size: 4,617 Bytes
eca4d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253549e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93d0c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eca4d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
license: mit
tags:
- generated_from_trainer
datasets:
- lener_br
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-large-finetuned-lener-br
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: lener_br
      type: lener_br
      config: lener_br
      split: train
      args: lener_br
    metrics:
    - name: Precision
      type: precision
      value: 0.8545767716535433
    - name: Recall
      type: recall
      value: 0.8976479710519514
    - name: F1
      type: f1
      value: 0.8755830076893987
    - name: Accuracy
      type: accuracy
      value: 0.979126510974644
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: lener_br
      type: lener_br
      config: lener_br
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9842606502473917
      verified: true
    - name: Precision
      type: precision
      value: 0.9880888491353608
      verified: true
    - name: Recall
      type: recall
      value: 0.9863977974551678
      verified: true
    - name: F1
      type: f1
      value: 0.9872425991435487
      verified: true
    - name: loss
      type: loss
      value: 0.12697908282279968
      verified: true
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: lener_br
      type: lener_br
      config: lener_br
      split: validation
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.979126510974644
      verified: true
    - name: Precision
      type: precision
      value: 0.9846948786709399
      verified: true
    - name: Recall
      type: recall
      value: 0.9839386958155646
      verified: true
    - name: F1
      type: f1
      value: 0.9843166420124387
      verified: true
    - name: loss
      type: loss
      value: 0.17586557567119598
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-large-finetuned-lener-br

This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the lener_br dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.8546
- Recall: 0.8976
- F1: 0.8756
- Accuracy: 0.9791

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0836        | 1.0   | 3914  | nan             | 0.5735    | 0.8348 | 0.6799 | 0.9526   |
| 0.0664        | 2.0   | 7828  | nan             | 0.8153    | 0.8315 | 0.8233 | 0.9658   |
| 0.0505        | 3.0   | 11742 | nan             | 0.6885    | 0.9147 | 0.7857 | 0.9644   |
| 0.1165        | 4.0   | 15656 | nan             | 0.7572    | 0.8067 | 0.7811 | 0.9641   |
| 0.0206        | 5.0   | 19570 | nan             | 0.8678    | 0.8770 | 0.8723 | 0.9774   |
| 0.02          | 6.0   | 23484 | nan             | 0.7285    | 0.8907 | 0.8015 | 0.9669   |
| 0.0248        | 7.0   | 27398 | nan             | 0.8717    | 0.9095 | 0.8902 | 0.9793   |
| 0.0223        | 8.0   | 31312 | nan             | 0.8407    | 0.8801 | 0.8600 | 0.9766   |
| 0.0084        | 9.0   | 35226 | nan             | 0.8354    | 0.8684 | 0.8516 | 0.9705   |
| 0.0067        | 10.0  | 39140 | nan             | 0.8312    | 0.9062 | 0.8671 | 0.9753   |
| 0.006         | 11.0  | 43054 | nan             | 0.8866    | 0.8953 | 0.8909 | 0.9784   |
| 0.0058        | 12.0  | 46968 | nan             | 0.8961    | 0.8987 | 0.8974 | 0.9807   |
| 0.0062        | 13.0  | 50882 | nan             | 0.8360    | 0.8785 | 0.8567 | 0.9783   |
| 0.0053        | 14.0  | 54796 | nan             | 0.8327    | 0.8749 | 0.8533 | 0.9782   |
| 0.003         | 15.0  | 58710 | nan             | 0.8546    | 0.8976 | 0.8756 | 0.9791   |


### Framework versions

- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1