File size: 4,617 Bytes
eca4d57 253549e 93d0c9a eca4d57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- lener_br
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-large-finetuned-lener-br
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lener_br
type: lener_br
config: lener_br
split: train
args: lener_br
metrics:
- name: Precision
type: precision
value: 0.8545767716535433
- name: Recall
type: recall
value: 0.8976479710519514
- name: F1
type: f1
value: 0.8755830076893987
- name: Accuracy
type: accuracy
value: 0.979126510974644
- task:
type: token-classification
name: Token Classification
dataset:
name: lener_br
type: lener_br
config: lener_br
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9842606502473917
verified: true
- name: Precision
type: precision
value: 0.9880888491353608
verified: true
- name: Recall
type: recall
value: 0.9863977974551678
verified: true
- name: F1
type: f1
value: 0.9872425991435487
verified: true
- name: loss
type: loss
value: 0.12697908282279968
verified: true
- task:
type: token-classification
name: Token Classification
dataset:
name: lener_br
type: lener_br
config: lener_br
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.979126510974644
verified: true
- name: Precision
type: precision
value: 0.9846948786709399
verified: true
- name: Recall
type: recall
value: 0.9839386958155646
verified: true
- name: F1
type: f1
value: 0.9843166420124387
verified: true
- name: loss
type: loss
value: 0.17586557567119598
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-large-finetuned-lener-br
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the lener_br dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.8546
- Recall: 0.8976
- F1: 0.8756
- Accuracy: 0.9791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0836 | 1.0 | 3914 | nan | 0.5735 | 0.8348 | 0.6799 | 0.9526 |
| 0.0664 | 2.0 | 7828 | nan | 0.8153 | 0.8315 | 0.8233 | 0.9658 |
| 0.0505 | 3.0 | 11742 | nan | 0.6885 | 0.9147 | 0.7857 | 0.9644 |
| 0.1165 | 4.0 | 15656 | nan | 0.7572 | 0.8067 | 0.7811 | 0.9641 |
| 0.0206 | 5.0 | 19570 | nan | 0.8678 | 0.8770 | 0.8723 | 0.9774 |
| 0.02 | 6.0 | 23484 | nan | 0.7285 | 0.8907 | 0.8015 | 0.9669 |
| 0.0248 | 7.0 | 27398 | nan | 0.8717 | 0.9095 | 0.8902 | 0.9793 |
| 0.0223 | 8.0 | 31312 | nan | 0.8407 | 0.8801 | 0.8600 | 0.9766 |
| 0.0084 | 9.0 | 35226 | nan | 0.8354 | 0.8684 | 0.8516 | 0.9705 |
| 0.0067 | 10.0 | 39140 | nan | 0.8312 | 0.9062 | 0.8671 | 0.9753 |
| 0.006 | 11.0 | 43054 | nan | 0.8866 | 0.8953 | 0.8909 | 0.9784 |
| 0.0058 | 12.0 | 46968 | nan | 0.8961 | 0.8987 | 0.8974 | 0.9807 |
| 0.0062 | 13.0 | 50882 | nan | 0.8360 | 0.8785 | 0.8567 | 0.9783 |
| 0.0053 | 14.0 | 54796 | nan | 0.8327 | 0.8749 | 0.8533 | 0.9782 |
| 0.003 | 15.0 | 58710 | nan | 0.8546 | 0.8976 | 0.8756 | 0.9791 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|