--- license: mit tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-finetuned-lener-br results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br config: lener_br split: train args: lener_br metrics: - name: Precision type: precision value: 0.8545767716535433 - name: Recall type: recall value: 0.8976479710519514 - name: F1 type: f1 value: 0.8755830076893987 - name: Accuracy type: accuracy value: 0.979126510974644 - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: test metrics: - name: Accuracy type: accuracy value: 0.9842606502473917 verified: true - name: Precision type: precision value: 0.9880888491353608 verified: true - name: Recall type: recall value: 0.9863977974551678 verified: true - name: F1 type: f1 value: 0.9872425991435487 verified: true - name: loss type: loss value: 0.12697908282279968 verified: true - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: validation metrics: - name: Accuracy type: accuracy value: 0.979126510974644 verified: true - name: Precision type: precision value: 0.9846948786709399 verified: true - name: Recall type: recall value: 0.9839386958155646 verified: true - name: F1 type: f1 value: 0.9843166420124387 verified: true - name: loss type: loss value: 0.17586557567119598 verified: true --- # xlm-roberta-large-finetuned-lener-br This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.8546 - Recall: 0.8976 - F1: 0.8756 - Accuracy: 0.9791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0836 | 1.0 | 3914 | nan | 0.5735 | 0.8348 | 0.6799 | 0.9526 | | 0.0664 | 2.0 | 7828 | nan | 0.8153 | 0.8315 | 0.8233 | 0.9658 | | 0.0505 | 3.0 | 11742 | nan | 0.6885 | 0.9147 | 0.7857 | 0.9644 | | 0.1165 | 4.0 | 15656 | nan | 0.7572 | 0.8067 | 0.7811 | 0.9641 | | 0.0206 | 5.0 | 19570 | nan | 0.8678 | 0.8770 | 0.8723 | 0.9774 | | 0.02 | 6.0 | 23484 | nan | 0.7285 | 0.8907 | 0.8015 | 0.9669 | | 0.0248 | 7.0 | 27398 | nan | 0.8717 | 0.9095 | 0.8902 | 0.9793 | | 0.0223 | 8.0 | 31312 | nan | 0.8407 | 0.8801 | 0.8600 | 0.9766 | | 0.0084 | 9.0 | 35226 | nan | 0.8354 | 0.8684 | 0.8516 | 0.9705 | | 0.0067 | 10.0 | 39140 | nan | 0.8312 | 0.9062 | 0.8671 | 0.9753 | | 0.006 | 11.0 | 43054 | nan | 0.8866 | 0.8953 | 0.8909 | 0.9784 | | 0.0058 | 12.0 | 46968 | nan | 0.8961 | 0.8987 | 0.8974 | 0.9807 | | 0.0062 | 13.0 | 50882 | nan | 0.8360 | 0.8785 | 0.8567 | 0.9783 | | 0.0053 | 14.0 | 54796 | nan | 0.8327 | 0.8749 | 0.8533 | 0.9782 | | 0.003 | 15.0 | 58710 | nan | 0.8546 | 0.8976 | 0.8756 | 0.9791 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1