Commit
·
0845279
1
Parent(s):
1f3735e
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2204.74 +/- 82.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6230210b331021dd949fe62fe775a37c695a99df74ba87e4c68a8de2dff70a2
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd8c0fcc3a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd8c0fcc430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd8c0fcc4c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd8c0fcc550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd8c0fcc5e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd8c0fcc670>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd8c0fcc700>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd8c0fcc790>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd8c0fcc820>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd8c0fcc8b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd8c0fcc940>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd8c0fcc9d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fd8c0fc66f0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1677746997863264031,
|
68 |
+
"learning_rate": 0.0007,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPzHFz+dAAVA7nK5vrSbiD8ddPO/UxXoPshTzL55eXe/8OWav2sfSz9fz60/fG2uP+r4v7+5MivANlgVPkWHEsB/l6W/2lbWv+JcKj9nNx1AnEAVv7uXab6ZS0Q/ZRnUv7VXQT+dObg+xxPtPvTMnr+ZPjc/QmIgQG+ik79iy6Q/D9BGQHODpr+Mq4Q+Eux3v0lCBL/JUHG/EmEQv6Fapz5GnpE/pmr4vCw3Xj+VGuq+aT6CP9j1Nr8MTD+9m5uiP6JiUb+izK8/vgMnP+Ivx79Fe6m/nTm4Pm83CsD0zJ6/XO1EPx9Uiz+RsO0+1HKxP8LtWL9z5JA+JBlJP+duPb9NRW4/BR+AvprouD+Tkws/DkXfv8DmPzu7rEm/rgYowP6Xt79FrRi/txFUPyycvzyCnzu/lRmtP9/hV7/7ia+/tVdBP5DeMcDHE+0+9Myev1dQBD+hTMg/gDY8PlBchD9wCBfAXAjyPj5PYz0Xw1W/ooTnPivd8z98LnI/e45bv3vHzL9LFUg9LGhlvrm9VL/ci7G/TH4Uv6BXUz+biIG9SacOvz51Bz9BTmG/5rMNPrVXQT+Q3jHAxxPtPvTMnr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAOHXO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9JeRvQAAAABYBf2/AAAAAGLHBb4AAAAA/sjePwAAAADI0ke9AAAAANgF6D8AAAAAeXxiPQAAAAC3KfG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApGCDtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKAsTjsAAAAA4LPbvwAAAADKvxG9AAAAAFJO9D8AAAAA18TLvAAAAACZMQFAAAAAAOTLzD0AAAAAkqj+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIoSY7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB1T1M9AAAAAOoU378AAAAALd8VvQAAAAD8afA/AAAAAAGv170AAAAA1hPcPwAAAABbq1S9AAAAAPTO9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7dQq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAULBivQAAAAAuTuO/AAAAAKlvnTwAAAAALWfgPwAAAAA+BH+9AAAAAEgh8z8AAAAAZ6HJPQAAAADg5vS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKDvRkXk5p+MAWyUTegDjAF0lEdAsASIj8k2P3V9lChoBkdAoXvNvXK8tmgHTegDaAhHQLAG+xVyWAx1fZQoaAZHQKI/qynDR+loB03oA2gIR0CwBxFvhqCZdX2UKGgGR0Ci+frk0aZQaAdN6ANoCEdAsAeI6IWP93V9lChoBkdAoBC4TwlSj2gHTegDaAhHQLAK+80k4WF1fZQoaAZHQKCRW0ojOcFoB03oA2gIR0CwDYiQgcLjdX2UKGgGR0Caj8GDtgKGaAdN6ANoCEdAsA2gewLVnXV9lChoBkdAoO8pASnLq2gHTegDaAhHQLAOHDcuand1fZQoaAZHQJpgkj/uLJloB03oA2gIR0CwE9OC5EtvdX2UKGgGR0Cd6Stj0+TvaAdN6ANoCEdAsBaG3Ytg8nV9lChoBkdAofxN6HCXQmgHTegDaAhHQLAWoAC4jKR1fZQoaAZHQKIBOj0th/loB03oA2gIR0CwFxt5yEL6dX2UKGgGR0CiDdhHskY5aAdN6ANoCEdAsBqjTYukDnV9lChoBkdAorS8fs/puGgHTegDaAhHQLAdL8Rcu8N1fZQoaAZHQKEljHvMKTloB03oA2gIR0CwHUxTXJ5ndX2UKGgGR0Cds+WaMJhOaAdN6ANoCEdAsB3VdzGPxXV9lChoBkdAoFcYuEmICWgHTegDaAhHQLAjQoEjgQ91fZQoaAZHQKJvNkH2RJVoB03oA2gIR0CwJeP1tfoidX2UKGgGR0CiTlyyD7IlaAdN6ANoCEdAsCX7C79Q43V9lChoBkdAoZz7xoZhrmgHTegDaAhHQLAmd6LwWnF1fZQoaAZHQKJKbMSsbNtoB03oA2gIR0CwKdRGpda/dX2UKGgGR0ChujgR9PUKaAdN6ANoCEdAsCxDe40/GHV9lChoBkdAomSD+T/yXmgHTegDaAhHQLAsWs7uDz11fZQoaAZHQKJYtMUypJhoB03oA2gIR0CwLNOEVWS2dX2UKGgGR0CfOQyjYZl4aAdN6ANoCEdAsDHZJAdGRXV9lChoBkdAoeyhsl9jPWgHTegDaAhHQLA02H446wN1fZQoaAZHQKEDEN+b3GpoB03oA2gIR0CwNO6d6LOzdX2UKGgGR0Ch8u/ra/RFaAdN6ANoCEdAsDVnms/6f3V9lChoBkdAooODncL0BmgHTegDaAhHQLA4xA2Q4jt1fZQoaAZHQKLCrlFMIu5oB03oA2gIR0CwOzlrZamodX2UKGgGR0ChjHHtnf2saAdN6ANoCEdAsDtQaGYa53V9lChoBkdAov+GbutwJmgHTegDaAhHQLA71g3974V1fZQoaAZHQKI6kEX+ERJoB03oA2gIR0CwQJr4etCBdX2UKGgGR0CgrBw6QvHtaAdN6ANoCEdAsEPxOJtSAHV9lChoBkdAoSepusLfDWgHTegDaAhHQLBECwtrbg11fZQoaAZHQKDD4jVQQ+VoB03oA2gIR0CwRIMFyJbddX2UKGgGR0CgvPsNMGoraAdN6ANoCEdAsEfuCJ40M3V9lChoBkdAoWbCm65G0GgHTegDaAhHQLBKdFFUhmp1fZQoaAZHQJqW5nmJWNpoB03oA2gIR0CwSosPWhAXdX2UKGgGR0Ch073tjTa1aAdN6ANoCEdAsEr/nKW9lHV9lChoBkdAomcgQjD8+GgHTegDaAhHQLBPVynDR+l1fZQoaAZHQKKvQQA+6iFoB03oA2gIR0CwUwiwjdHldX2UKGgGR0CgnLMTFl06aAdN6ANoCEdAsFMfwSamXXV9lChoBkdAogduKdhAnmgHTegDaAhHQLBTmv9LpRp1fZQoaAZHQJ+NhFG5MDhoB03oA2gIR0CwVwNq1w5vdX2UKGgGR0CitI9weeWfaAdN6ANoCEdAsFmDV09yLnV9lChoBkdAojCIlv60pmgHTegDaAhHQLBZnE6DGtJ1fZQoaAZHQKHmTakAPupoB03oA2gIR0CwWhx4hUzbdX2UKGgGR0Ch+itoSL62aAdN6ANoCEdAsF5Yclw97nV9lChoBkdAokqIzeoDPmgHTegDaAhHQLBiM3Ux20R1fZQoaAZHQKBwoAjps41oB03oA2gIR0CwYktBfKISdX2UKGgGR0Cg1z7FCLMtaAdN6ANoCEdAsGLA1gpjMHV9lChoBkdAkcA+cMEzPGgHTegDaAhHQLBmKEovzvt1fZQoaAZHQKMFSgAZKnNoB03oA2gIR0CwaKOaa1CxdX2UKGgGR0ChevSUTtb+aAdN6ANoCEdAsGi5m7J4jnV9lChoBkdAowoISWZ7X2gHTegDaAhHQLBpOSlFc6h1fZQoaAZHQKNZ/uIhyKhoB03oA2gIR0CwbRPBSDRMdX2UKGgGR0CjgqgrH2h7aAdN6ANoCEdAsHEU7bL2YnV9lChoBkdAn27qakRBeGgHTegDaAhHQLBxK2OyVwB1fZQoaAZHQKPLCjX4CZFoB03oA2gIR0CwcaVHJ9y+dX2UKGgGR0CiC4G7J4jbaAdN6ANoCEdAsHUDIMjNZHV9lChoBkdAojujlT3qRmgHTegDaAhHQLB3f0GNaQp1fZQoaAZHQKIJpx/d69loB03oA2gIR0Cwd5Ztm+TNdX2UKGgGR0CitKwNCqp+aAdN6ANoCEdAsHgQCQtBfXV9lChoBkdAot40+s5n12gHTegDaAhHQLB73u8scyZ1fZQoaAZHQKH0I9nK4hFoB03oA2gIR0Cwf90Re1KHdX2UKGgGR0Cg7T6MrEtNaAdN6ANoCEdAsIAFvo/zKHV9lChoBkdAooJg+QlrumgHTegDaAhHQLCAq9hZyMl1fZQoaAZHQKI02HSnccloB03oA2gIR0Cwg/6vNeMRdX2UKGgGR0CirGEdeY2LaAdN6ANoCEdAsIZwbo8p1HV9lChoBkdAorJoeLehwmgHTegDaAhHQLCGiUvPC2t1fZQoaAZHQKLGkFfReC1oB03oA2gIR0CwhwbTUiIMdX2UKGgGR0CivMLylN1yaAdN6ANoCEdAsIqUyJsO5XV9lChoBkdAodjW/Yao/GgHTegDaAhHQLCOkCp3os91fZQoaAZHQKAy6NoakyloB03oA2gIR0Cwjre1WsBAdX2UKGgGR0ChGW3d9Dx9aAdN6ANoCEdAsI+Bct5D7nV9lChoBkdAoxXXs9jgAWgHTegDaAhHQLCUDgOjIq91fZQoaAZHQKIChkyULUloB03oA2gIR0Cwl7dgv115dX2UKGgGR0Cie3OZkTYeaAdN6ANoCEdAsJfOjXWe6XV9lChoBkdAoT0IQQL/j2gHTegDaAhHQLCYS7cfvF51fZQoaAZHQKI45+EytV9oB03oA2gIR0CwnLX4bjtHdX2UKGgGR0CYNz/smfGuaAdN6ANoCEdAsKA+/QBxP3V9lChoBkdAopgs4YJmd2gHTegDaAhHQLCgVp84Pwx1fZQoaAZHQJ3xKsNlRP5oB03oA2gIR0CwoNP91loUdX2UKGgGR0Chl1cyWRigaAdN6ANoCEdAsKQ4Qrc0tXV9lChoBkdAoTuR+rlvImgHTegDaAhHQLCmrPt2LYR1fZQoaAZHQJ8AOd6LOzJoB03oA2gIR0CwpsOG47RwdX2UKGgGR0ChZRjXvphXaAdN6ANoCEdAsKdAgxJumHV9lChoBkdAouLiP0Zm7WgHTegDaAhHQLCrc8KG+K11fZQoaAZHQKIBR+wTufFoB03oA2gIR0CwrzzfBN21dX2UKGgGR0Chn8RzijtYaAdN6ANoCEdAsK9ThybQTnV9lChoBkdAn0aroW56MWgHTegDaAhHQLCvzAjY7JZ1fZQoaAZHQKD8WTpPhydoB03oA2gIR0CwsyuXZ5AydX2UKGgGR0CggzGL1mJ4aAdN6ANoCEdAsLWhbUwztXV9lChoBkdAoLvlzGPxQWgHTegDaAhHQLC1vBInSfF1fZQoaAZHQKCl3mL9/BpoB03oA2gIR0CwtkdVWCEpdX2UKGgGR0ChxUN8VpK0aAdN6ANoCEdAsLo6VqveQHV9lChoBkdAoa4vNke6qmgHTegDaAhHQLC+Rpobn5l1fZQoaAZHQKHvRg2Ifr9oB03oA2gIR0Cwvl4rJ8v3dX2UKGgGR0CiYII0ygwoaAdN6ANoCEdAsL7XP8hs7HVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 31250,
|
99 |
+
"n_steps": 16,
|
100 |
+
"gamma": 0.98,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f8acb7a27654227b9ffed77a067d533066f02f9ade9cecd87f75ed29b13eb6b
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:766c088d1f07a6cea7ef17f70295a60cd791eca1f45c343b69ac0b18bf26f910
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd8c0fcc3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd8c0fcc430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd8c0fcc4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd8c0fcc550>", "_build": "<function ActorCriticPolicy._build at 0x7fd8c0fcc5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd8c0fcc670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd8c0fcc700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd8c0fcc790>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd8c0fcc820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd8c0fcc8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd8c0fcc940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd8c0fcc9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd8c0fc66f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677746997863264031, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPzHFz+dAAVA7nK5vrSbiD8ddPO/UxXoPshTzL55eXe/8OWav2sfSz9fz60/fG2uP+r4v7+5MivANlgVPkWHEsB/l6W/2lbWv+JcKj9nNx1AnEAVv7uXab6ZS0Q/ZRnUv7VXQT+dObg+xxPtPvTMnr+ZPjc/QmIgQG+ik79iy6Q/D9BGQHODpr+Mq4Q+Eux3v0lCBL/JUHG/EmEQv6Fapz5GnpE/pmr4vCw3Xj+VGuq+aT6CP9j1Nr8MTD+9m5uiP6JiUb+izK8/vgMnP+Ivx79Fe6m/nTm4Pm83CsD0zJ6/XO1EPx9Uiz+RsO0+1HKxP8LtWL9z5JA+JBlJP+duPb9NRW4/BR+AvprouD+Tkws/DkXfv8DmPzu7rEm/rgYowP6Xt79FrRi/txFUPyycvzyCnzu/lRmtP9/hV7/7ia+/tVdBP5DeMcDHE+0+9Myev1dQBD+hTMg/gDY8PlBchD9wCBfAXAjyPj5PYz0Xw1W/ooTnPivd8z98LnI/e45bv3vHzL9LFUg9LGhlvrm9VL/ci7G/TH4Uv6BXUz+biIG9SacOvz51Bz9BTmG/5rMNPrVXQT+Q3jHAxxPtPvTMnr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAOHXO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9JeRvQAAAABYBf2/AAAAAGLHBb4AAAAA/sjePwAAAADI0ke9AAAAANgF6D8AAAAAeXxiPQAAAAC3KfG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApGCDtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKAsTjsAAAAA4LPbvwAAAADKvxG9AAAAAFJO9D8AAAAA18TLvAAAAACZMQFAAAAAAOTLzD0AAAAAkqj+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIoSY7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB1T1M9AAAAAOoU378AAAAALd8VvQAAAAD8afA/AAAAAAGv170AAAAA1hPcPwAAAABbq1S9AAAAAPTO9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7dQq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAULBivQAAAAAuTuO/AAAAAKlvnTwAAAAALWfgPwAAAAA+BH+9AAAAAEgh8z8AAAAAZ6HJPQAAAADg5vS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKDvRkXk5p+MAWyUTegDjAF0lEdAsASIj8k2P3V9lChoBkdAoXvNvXK8tmgHTegDaAhHQLAG+xVyWAx1fZQoaAZHQKI/qynDR+loB03oA2gIR0CwBxFvhqCZdX2UKGgGR0Ci+frk0aZQaAdN6ANoCEdAsAeI6IWP93V9lChoBkdAoBC4TwlSj2gHTegDaAhHQLAK+80k4WF1fZQoaAZHQKCRW0ojOcFoB03oA2gIR0CwDYiQgcLjdX2UKGgGR0Caj8GDtgKGaAdN6ANoCEdAsA2gewLVnXV9lChoBkdAoO8pASnLq2gHTegDaAhHQLAOHDcuand1fZQoaAZHQJpgkj/uLJloB03oA2gIR0CwE9OC5EtvdX2UKGgGR0Cd6Stj0+TvaAdN6ANoCEdAsBaG3Ytg8nV9lChoBkdAofxN6HCXQmgHTegDaAhHQLAWoAC4jKR1fZQoaAZHQKIBOj0th/loB03oA2gIR0CwFxt5yEL6dX2UKGgGR0CiDdhHskY5aAdN6ANoCEdAsBqjTYukDnV9lChoBkdAorS8fs/puGgHTegDaAhHQLAdL8Rcu8N1fZQoaAZHQKEljHvMKTloB03oA2gIR0CwHUxTXJ5ndX2UKGgGR0Cds+WaMJhOaAdN6ANoCEdAsB3VdzGPxXV9lChoBkdAoFcYuEmICWgHTegDaAhHQLAjQoEjgQ91fZQoaAZHQKJvNkH2RJVoB03oA2gIR0CwJeP1tfoidX2UKGgGR0CiTlyyD7IlaAdN6ANoCEdAsCX7C79Q43V9lChoBkdAoZz7xoZhrmgHTegDaAhHQLAmd6LwWnF1fZQoaAZHQKJKbMSsbNtoB03oA2gIR0CwKdRGpda/dX2UKGgGR0ChujgR9PUKaAdN6ANoCEdAsCxDe40/GHV9lChoBkdAomSD+T/yXmgHTegDaAhHQLAsWs7uDz11fZQoaAZHQKJYtMUypJhoB03oA2gIR0CwLNOEVWS2dX2UKGgGR0CfOQyjYZl4aAdN6ANoCEdAsDHZJAdGRXV9lChoBkdAoeyhsl9jPWgHTegDaAhHQLA02H446wN1fZQoaAZHQKEDEN+b3GpoB03oA2gIR0CwNO6d6LOzdX2UKGgGR0Ch8u/ra/RFaAdN6ANoCEdAsDVnms/6f3V9lChoBkdAooODncL0BmgHTegDaAhHQLA4xA2Q4jt1fZQoaAZHQKLCrlFMIu5oB03oA2gIR0CwOzlrZamodX2UKGgGR0ChjHHtnf2saAdN6ANoCEdAsDtQaGYa53V9lChoBkdAov+GbutwJmgHTegDaAhHQLA71g3974V1fZQoaAZHQKI6kEX+ERJoB03oA2gIR0CwQJr4etCBdX2UKGgGR0CgrBw6QvHtaAdN6ANoCEdAsEPxOJtSAHV9lChoBkdAoSepusLfDWgHTegDaAhHQLBECwtrbg11fZQoaAZHQKDD4jVQQ+VoB03oA2gIR0CwRIMFyJbddX2UKGgGR0CgvPsNMGoraAdN6ANoCEdAsEfuCJ40M3V9lChoBkdAoWbCm65G0GgHTegDaAhHQLBKdFFUhmp1fZQoaAZHQJqW5nmJWNpoB03oA2gIR0CwSosPWhAXdX2UKGgGR0Ch073tjTa1aAdN6ANoCEdAsEr/nKW9lHV9lChoBkdAomcgQjD8+GgHTegDaAhHQLBPVynDR+l1fZQoaAZHQKKvQQA+6iFoB03oA2gIR0CwUwiwjdHldX2UKGgGR0CgnLMTFl06aAdN6ANoCEdAsFMfwSamXXV9lChoBkdAogduKdhAnmgHTegDaAhHQLBTmv9LpRp1fZQoaAZHQJ+NhFG5MDhoB03oA2gIR0CwVwNq1w5vdX2UKGgGR0CitI9weeWfaAdN6ANoCEdAsFmDV09yLnV9lChoBkdAojCIlv60pmgHTegDaAhHQLBZnE6DGtJ1fZQoaAZHQKHmTakAPupoB03oA2gIR0CwWhx4hUzbdX2UKGgGR0Ch+itoSL62aAdN6ANoCEdAsF5Yclw97nV9lChoBkdAokqIzeoDPmgHTegDaAhHQLBiM3Ux20R1fZQoaAZHQKBwoAjps41oB03oA2gIR0CwYktBfKISdX2UKGgGR0Cg1z7FCLMtaAdN6ANoCEdAsGLA1gpjMHV9lChoBkdAkcA+cMEzPGgHTegDaAhHQLBmKEovzvt1fZQoaAZHQKMFSgAZKnNoB03oA2gIR0CwaKOaa1CxdX2UKGgGR0ChevSUTtb+aAdN6ANoCEdAsGi5m7J4jnV9lChoBkdAowoISWZ7X2gHTegDaAhHQLBpOSlFc6h1fZQoaAZHQKNZ/uIhyKhoB03oA2gIR0CwbRPBSDRMdX2UKGgGR0CjgqgrH2h7aAdN6ANoCEdAsHEU7bL2YnV9lChoBkdAn27qakRBeGgHTegDaAhHQLBxK2OyVwB1fZQoaAZHQKPLCjX4CZFoB03oA2gIR0CwcaVHJ9y+dX2UKGgGR0CiC4G7J4jbaAdN6ANoCEdAsHUDIMjNZHV9lChoBkdAojujlT3qRmgHTegDaAhHQLB3f0GNaQp1fZQoaAZHQKIJpx/d69loB03oA2gIR0Cwd5Ztm+TNdX2UKGgGR0CitKwNCqp+aAdN6ANoCEdAsHgQCQtBfXV9lChoBkdAot40+s5n12gHTegDaAhHQLB73u8scyZ1fZQoaAZHQKH0I9nK4hFoB03oA2gIR0Cwf90Re1KHdX2UKGgGR0Cg7T6MrEtNaAdN6ANoCEdAsIAFvo/zKHV9lChoBkdAooJg+QlrumgHTegDaAhHQLCAq9hZyMl1fZQoaAZHQKI02HSnccloB03oA2gIR0Cwg/6vNeMRdX2UKGgGR0CirGEdeY2LaAdN6ANoCEdAsIZwbo8p1HV9lChoBkdAorJoeLehwmgHTegDaAhHQLCGiUvPC2t1fZQoaAZHQKLGkFfReC1oB03oA2gIR0CwhwbTUiIMdX2UKGgGR0CivMLylN1yaAdN6ANoCEdAsIqUyJsO5XV9lChoBkdAodjW/Yao/GgHTegDaAhHQLCOkCp3os91fZQoaAZHQKAy6NoakyloB03oA2gIR0Cwjre1WsBAdX2UKGgGR0ChGW3d9Dx9aAdN6ANoCEdAsI+Bct5D7nV9lChoBkdAoxXXs9jgAWgHTegDaAhHQLCUDgOjIq91fZQoaAZHQKIChkyULUloB03oA2gIR0Cwl7dgv115dX2UKGgGR0Cie3OZkTYeaAdN6ANoCEdAsJfOjXWe6XV9lChoBkdAoT0IQQL/j2gHTegDaAhHQLCYS7cfvF51fZQoaAZHQKI45+EytV9oB03oA2gIR0CwnLX4bjtHdX2UKGgGR0CYNz/smfGuaAdN6ANoCEdAsKA+/QBxP3V9lChoBkdAopgs4YJmd2gHTegDaAhHQLCgVp84Pwx1fZQoaAZHQJ3xKsNlRP5oB03oA2gIR0CwoNP91loUdX2UKGgGR0Chl1cyWRigaAdN6ANoCEdAsKQ4Qrc0tXV9lChoBkdAoTuR+rlvImgHTegDaAhHQLCmrPt2LYR1fZQoaAZHQJ8AOd6LOzJoB03oA2gIR0CwpsOG47RwdX2UKGgGR0ChZRjXvphXaAdN6ANoCEdAsKdAgxJumHV9lChoBkdAouLiP0Zm7WgHTegDaAhHQLCrc8KG+K11fZQoaAZHQKIBR+wTufFoB03oA2gIR0CwrzzfBN21dX2UKGgGR0Chn8RzijtYaAdN6ANoCEdAsK9ThybQTnV9lChoBkdAn0aroW56MWgHTegDaAhHQLCvzAjY7JZ1fZQoaAZHQKD8WTpPhydoB03oA2gIR0CwsyuXZ5AydX2UKGgGR0CggzGL1mJ4aAdN6ANoCEdAsLWhbUwztXV9lChoBkdAoLvlzGPxQWgHTegDaAhHQLC1vBInSfF1fZQoaAZHQKCl3mL9/BpoB03oA2gIR0CwtkdVWCEpdX2UKGgGR0ChxUN8VpK0aAdN6ANoCEdAsLo6VqveQHV9lChoBkdAoa4vNke6qmgHTegDaAhHQLC+Rpobn5l1fZQoaAZHQKHvRg2Ifr9oB03oA2gIR0Cwvl4rJ8v3dX2UKGgGR0CiYII0ygwoaAdN6ANoCEdAsL7XP8hs7HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 16, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a61d6fc6c34ba86bcdba26937701cc71bf82af37a5df9ade014d15ca8cad782
|
3 |
+
size 1134891
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2204.744313750416, "std_reward": 82.92959001778635, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T10:08:05.083269"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cdde7d60540f7dd1882df57621e0bac2bce8e7f25fdee79de014f8e28b0f7da
|
3 |
+
size 2136
|