|
import torch |
|
from typing import Optional, Tuple, Union |
|
from diffusers import UNet2DConditionModel |
|
from diffusers.models.attention_processor import Attention |
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput |
|
|
|
|
|
def switch_multiview_processor(model, enable_filter=lambda x:True): |
|
def recursive_add_processors(name: str, module: torch.nn.Module): |
|
for sub_name, child in module.named_children(): |
|
recursive_add_processors(f"{name}.{sub_name}", child) |
|
|
|
if isinstance(module, Attention): |
|
processor = module.get_processor() |
|
if isinstance(processor, multiviewAttnProc): |
|
processor.enabled = enable_filter(f"{name}.processor") |
|
|
|
for name, module in model.named_children(): |
|
recursive_add_processors(name, module) |
|
|
|
|
|
def add_multiview_processor(model: torch.nn.Module, enable_filter=lambda x:True, **kwargs): |
|
return_dict = torch.nn.ModuleDict() |
|
def recursive_add_processors(name: str, module: torch.nn.Module): |
|
for sub_name, child in module.named_children(): |
|
if "ref_unet" not in (sub_name + name): |
|
recursive_add_processors(f"{name}.{sub_name}", child) |
|
|
|
if isinstance(module, Attention): |
|
new_processor = multiviewAttnProc( |
|
chained_proc=module.get_processor(), |
|
enabled=enable_filter(f"{name}.processor"), |
|
name=f"{name}.processor", |
|
hidden_states_dim=module.inner_dim, |
|
**kwargs |
|
) |
|
module.set_processor(new_processor) |
|
return_dict[f"{name}.processor".replace(".", "__")] = new_processor |
|
|
|
for name, module in model.named_children(): |
|
recursive_add_processors(name, module) |
|
|
|
return return_dict |
|
|
|
|
|
class multiviewAttnProc(torch.nn.Module): |
|
def __init__( |
|
self, |
|
chained_proc, |
|
enabled=False, |
|
name=None, |
|
hidden_states_dim=None, |
|
chain_pos="parralle", |
|
num_modalities=1, |
|
views=4, |
|
base_img_size=64, |
|
) -> None: |
|
super().__init__() |
|
self.enabled = enabled |
|
self.chained_proc = chained_proc |
|
self.name = name |
|
self.hidden_states_dim = hidden_states_dim |
|
self.num_modalities = num_modalities |
|
self.views = views |
|
self.base_img_size = base_img_size |
|
self.chain_pos = chain_pos |
|
self.diff_joint_attn = True |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
**kwargs |
|
) -> torch.Tensor: |
|
if not self.enabled: |
|
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
|
|
B, L, C = hidden_states.shape |
|
mv = self.views |
|
hidden_states = hidden_states.reshape(B // mv, mv, L, C).reshape(-1, mv * L, C) |
|
hidden_states = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) |
|
return hidden_states.reshape(B // mv, mv, L, C).reshape(-1, L, C) |
|
|
|
|
|
|
|
class UnifieldWrappedUNet(UNet2DConditionModel): |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 4, |
|
out_channels: int = 4, |
|
center_input_sample: bool = False, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", |
|
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), |
|
only_cross_attention: Union[bool, Tuple[bool]] = False, |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
layers_per_block: Union[int, Tuple[int]] = 2, |
|
downsample_padding: int = 1, |
|
mid_block_scale_factor: float = 1, |
|
dropout: float = 0.0, |
|
act_fn: str = "silu", |
|
norm_num_groups: Optional[int] = 32, |
|
norm_eps: float = 1e-5, |
|
cross_attention_dim: Union[int, Tuple[int]] = 1280, |
|
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, |
|
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, |
|
encoder_hid_dim: Optional[int] = None, |
|
encoder_hid_dim_type: Optional[str] = None, |
|
attention_head_dim: Union[int, Tuple[int]] = 8, |
|
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
class_embed_type: Optional[str] = None, |
|
addition_embed_type: Optional[str] = None, |
|
addition_time_embed_dim: Optional[int] = None, |
|
num_class_embeds: Optional[int] = None, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_skip_time_act: bool = False, |
|
resnet_out_scale_factor: float = 1.0, |
|
time_embedding_type: str = "positional", |
|
time_embedding_dim: Optional[int] = None, |
|
time_embedding_act_fn: Optional[str] = None, |
|
timestep_post_act: Optional[str] = None, |
|
time_cond_proj_dim: Optional[int] = None, |
|
conv_in_kernel: int = 3, |
|
conv_out_kernel: int = 3, |
|
projection_class_embeddings_input_dim: Optional[int] = None, |
|
attention_type: str = "default", |
|
class_embeddings_concat: bool = False, |
|
mid_block_only_cross_attention: Optional[bool] = None, |
|
cross_attention_norm: Optional[str] = None, |
|
addition_embed_type_num_heads: int = 64, |
|
multiview_attn_position: str = "attn1", |
|
n_views: int = 4, |
|
num_modalities: int = 1, |
|
latent_size: int = 64, |
|
multiview_chain_pose: str = "parralle", |
|
**kwargs |
|
): |
|
super().__init__(**{ |
|
k: v for k, v in locals().items() if k not in |
|
["self", "kwargs", "__class__", "n_views", "num_modalities", "latent_size", "multiview_chain_pose", "multiview_attn_position"] |
|
}) |
|
self.n_views = n_views |
|
add_multiview_processor( |
|
model = self, |
|
enable_filter = lambda name: name.endswith(f"{multiview_attn_position}.processor"), |
|
num_modalities = num_modalities, |
|
base_img_size = latent_size, |
|
chain_pos = multiview_chain_pose, |
|
views=n_views |
|
) |
|
|
|
switch_multiview_processor(self, enable_filter=lambda name: name.endswith(f"{multiview_attn_position}.processor")) |
|
|
|
def __call__( |
|
self, |
|
sample: torch.Tensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
condition_latens: torch.Tensor = None, |
|
class_labels: Optional[torch.Tensor] = None, |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
sample = torch.cat([sample, condition_latens], dim=1) |
|
return self.forward( |
|
sample, timestep, encoder_hidden_states, class_labels=class_labels, |
|
) |