LukeJacob2023 commited on
Commit
237f1fa
·
verified ·
1 Parent(s): 2f797a3

Model save

Browse files
Files changed (2) hide show
  1. README.md +71 -9
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,24 +1,86 @@
1
  ---
 
 
2
  tags:
3
- - image-classification
4
- - pytorch
5
- - huggingpics
6
  metrics:
7
  - accuracy
8
  model-index:
9
- - name: nsfw-classifier
10
  results:
11
  - task:
12
  name: Image Classification
13
  type: image-classification
 
 
 
 
 
 
14
  metrics:
15
  - name: Accuracy
16
  type: accuracy
17
- value: 0.9200000166893005
18
- datasets:
19
- - deepghs/nsfw_detect
20
  ---
21
 
22
- # nsfw-classifier
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- NSFW Classifier using [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k)
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
  tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
  metrics:
9
  - accuracy
10
  model-index:
11
+ - name: nsfw-image-detector
12
  results:
13
  - task:
14
  name: Image Classification
15
  type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9315615772103526
 
 
26
  ---
27
 
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # nsfw-image-detector
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.8138
36
+ - Accuracy: 0.9316
37
+ - Accuracy K: 0.9887
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 2e-05
57
+ - train_batch_size: 32
58
+ - eval_batch_size: 32
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 500
63
+ - num_epochs: 10
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy K |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|
70
+ | 0.7836 | 1.0 | 720 | 0.3188 | 0.9085 | 0.9891 |
71
+ | 0.2441 | 2.0 | 1440 | 0.2382 | 0.9257 | 0.9936 |
72
+ | 0.1412 | 3.0 | 2160 | 0.2334 | 0.9335 | 0.9932 |
73
+ | 0.0857 | 4.0 | 2880 | 0.2934 | 0.9347 | 0.9934 |
74
+ | 0.0569 | 5.0 | 3600 | 0.4500 | 0.9307 | 0.9927 |
75
+ | 0.0371 | 6.0 | 4320 | 0.5524 | 0.9357 | 0.9910 |
76
+ | 0.0232 | 7.0 | 5040 | 0.6691 | 0.9347 | 0.9913 |
77
+ | 0.02 | 8.0 | 5760 | 0.7408 | 0.9335 | 0.9917 |
78
+ | 0.0154 | 9.0 | 6480 | 0.8138 | 0.9316 | 0.9887 |
79
+
80
+
81
+ ### Framework versions
82
 
83
+ - Transformers 4.36.2
84
+ - Pytorch 2.0.0
85
+ - Datasets 2.15.0
86
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0683b2d440211496a095a654c6e678165966bbe06d23ea240145d513ea35b385
3
  size 343233204
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54d25f4f8fe459481c52a7edfdde251a1211bfc62cf05102ea435c001610fa1f
3
  size 343233204