Lukee commited on
Commit
2330835
1 Parent(s): 26403df

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.96 +/- 1.66
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:560244f3aeef57a8cb6f49cfcdb231f386e140ae1054ebf00cade245c39bce0d
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8d005de040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f8d005d5b70>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675790214764270329,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/IzgProaWTzboB0//IzgProaWTzboB0//IzgProaWTzboB0//IzgProaWTzboB0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAT4LJv7Unhb8ow9A/srXYP2Xzxj/cwJC+R4ffPgkLDr+m39C/kzdyP6Ngmb8CB94/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD8jOA+uhpZPNugHT/yNDE8pg+WO1rE1rv8jOA+uhpZPNugHT/yNDE8pg+WO1rE1rv8jOA+uhpZPNugHT/yNDE8pg+WO1rE1rv8jOA+uhpZPNugHT/yNDE8pg+WO1rE1ruUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.43857563 0.013251 0.6157357 ]\n [0.43857563 0.013251 0.6157357 ]\n [0.43857563 0.013251 0.6157357 ]\n [0.43857563 0.013251 0.6157357 ]]",
60
+ "desired_goal": "[[-1.5742892 -1.0402743 1.6309557 ]\n [ 1.6930449 1.5543028 -0.2827214 ]\n [ 0.43657896 -0.5548559 -1.6318252 ]\n [ 0.9461605 -1.1982616 1.7345889 ]]",
61
+ "observation": "[[ 0.43857563 0.013251 0.6157357 0.01081585 0.0045795 -0.00655417]\n [ 0.43857563 0.013251 0.6157357 0.01081585 0.0045795 -0.00655417]\n [ 0.43857563 0.013251 0.6157357 0.01081585 0.0045795 -0.00655417]\n [ 0.43857563 0.013251 0.6157357 0.01081585 0.0045795 -0.00655417]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4C2iPUGfsTr28509E6aWPUuK8T1WQcY68M8SvtnHCz5j8lA+9BzBPRtZqTvqXIc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.07918906 0.00135515 0.07712547]\n [ 0.07355895 0.11793955 0.00151257]\n [-0.14337134 0.13650455 0.20404963]\n [ 0.0942935 0.00516809 0.26438075]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIICi37XukGMCUhpRSlIwBbJRLMowBdJRHQKbjMoG6f8N1fZQoaAZoCWgPQwiGPIIbKZsFwJSGlFKUaBVLMmgWR0Cm4vTP0I1MdX2UKGgGaAloD0MIYYvdPqscEcCUhpRSlGgVSzJoFkdApuK2cjJMg3V9lChoBmgJaA9DCHYzox8NVxjAlIaUUpRoFUsyaBZHQKbiePn0TUR1fZQoaAZoCWgPQwg5tMh2vl8EwJSGlFKUaBVLMmgWR0Cm5C5D7ZWadX2UKGgGaAloD0MIG0gXm1YaE8CUhpRSlGgVSzJoFkdApuPxDgIhQnV9lChoBmgJaA9DCLyt9Nps7ADAlIaUUpRoFUsyaBZHQKbjspnYg7p1fZQoaAZoCWgPQwha1v1jIdoKwJSGlFKUaBVLMmgWR0Cm43W9DhLodX2UKGgGaAloD0MIhlW8kXmUE8CUhpRSlGgVSzJoFkdApuUIa99MK3V9lChoBmgJaA9DCC0FpP0P0AnAlIaUUpRoFUsyaBZHQKbkyr+YMOR1fZQoaAZoCWgPQwhffNEeL4QAwJSGlFKUaBVLMmgWR0Cm5IxNqQA/dX2UKGgGaAloD0MIIEQy5Nj6B8CUhpRSlGgVSzJoFkdApuRO0LMLW3V9lChoBmgJaA9DCCqsVFBRZRTAlIaUUpRoFUsyaBZHQKbl5ucc2it1fZQoaAZoCWgPQwjFA8qmXPEUwJSGlFKUaBVLMmgWR0Cm5alLnLaFdX2UKGgGaAloD0MIZOYCl8faBMCUhpRSlGgVSzJoFkdApuVqxLTQV3V9lChoBmgJaA9DCC2VtyOctgfAlIaUUpRoFUsyaBZHQKblLTm4iHJ1fZQoaAZoCWgPQwhFL6NYbvkYwJSGlFKUaBVLMmgWR0Cm5t6GgzxgdX2UKGgGaAloD0MITz49tmXgDsCUhpRSlGgVSzJoFkdApuahcophF3V9lChoBmgJaA9DCKCM8WH2shDAlIaUUpRoFUsyaBZHQKbmYydnTRZ1fZQoaAZoCWgPQwgMzXUaaQkJwJSGlFKUaBVLMmgWR0Cm5iXgk1MudX2UKGgGaAloD0MIHm6HhsUIC8CUhpRSlGgVSzJoFkdApufJujynUHV9lChoBmgJaA9DCHmvWpnwSwnAlIaUUpRoFUsyaBZHQKbnjA/s3Q51fZQoaAZoCWgPQwhXsI14slsLwJSGlFKUaBVLMmgWR0Cm504qPOpsdX2UKGgGaAloD0MIfEW3XtOjFcCUhpRSlGgVSzJoFkdApucQ/HHWBnV9lChoBmgJaA9DCF3dsdgm9RHAlIaUUpRoFUsyaBZHQKboqtuk1uR1fZQoaAZoCWgPQwi9w+3QsFgJwJSGlFKUaBVLMmgWR0Cm6G03XI2gdX2UKGgGaAloD0MI8fRKWYYoEMCUhpRSlGgVSzJoFkdApuguuTzNEHV9lChoBmgJaA9DCB3KUBVTiQ7AlIaUUpRoFUsyaBZHQKbn8TEBKcx1fZQoaAZoCWgPQwgBF2TL8hULwJSGlFKUaBVLMmgWR0Cm6Ystbs4UdX2UKGgGaAloD0MI+3lTkQrDDsCUhpRSlGgVSzJoFkdApulNqgyuZHV9lChoBmgJaA9DCBzvjozVJg7AlIaUUpRoFUsyaBZHQKbpD3xnWat1fZQoaAZoCWgPQwjecvVjk1wDwJSGlFKUaBVLMmgWR0Cm6NIb4rSWdX2UKGgGaAloD0MI843onnVNA8CUhpRSlGgVSzJoFkdApupy7PIGQnV9lChoBmgJaA9DCIbLKmwGmALAlIaUUpRoFUsyaBZHQKbqNT3IuGt1fZQoaAZoCWgPQwjniedsAaENwJSGlFKUaBVLMmgWR0Cm6fbXHzYmdX2UKGgGaAloD0MIfuTWpNuCFcCUhpRSlGgVSzJoFkdApum5t+CsfnV9lChoBmgJaA9DCBQ/xty1xA7AlIaUUpRoFUsyaBZHQKbrVK4hEBt1fZQoaAZoCWgPQwi7ufjbnkAWwJSGlFKUaBVLMmgWR0Cm6xcQAdXDdX2UKGgGaAloD0MI+b64VKWNC8CUhpRSlGgVSzJoFkdApurYicG1QnV9lChoBmgJaA9DCIvFbworNQzAlIaUUpRoFUsyaBZHQKbqmuoxYaJ1fZQoaAZoCWgPQwht4uR+h6INwJSGlFKUaBVLMmgWR0Cm7C8o6S1WdX2UKGgGaAloD0MIPWU1XU+0DMCUhpRSlGgVSzJoFkdApuvxk7Omi3V9lChoBmgJaA9DCN1dZ0P++QTAlIaUUpRoFUsyaBZHQKbrszyjHn51fZQoaAZoCWgPQwjFVtC0xEoNwJSGlFKUaBVLMmgWR0Cm63W6kIomdX2UKGgGaAloD0MI34rEBDXcB8CUhpRSlGgVSzJoFkdApu0ZBu4wy3V9lChoBmgJaA9DCDrKwWwCrAvAlIaUUpRoFUsyaBZHQKbs24sEq2B1fZQoaAZoCWgPQwgYBcHj21sSwJSGlFKUaBVLMmgWR0Cm7J150KZ2dX2UKGgGaAloD0MIQIaOHVSyE8CUhpRSlGgVSzJoFkdApuxgIt16mnV9lChoBmgJaA9DCDPeVnptVgLAlIaUUpRoFUsyaBZHQKbt/BrN4aB1fZQoaAZoCWgPQwiQhegQOPIWwJSGlFKUaBVLMmgWR0Cm7b5pJwsHdX2UKGgGaAloD0MI51Wd1QLbEMCUhpRSlGgVSzJoFkdApu1/6KtPpXV9lChoBmgJaA9DCLzrbMg/sw3AlIaUUpRoFUsyaBZHQKbtQmMOwxF1fZQoaAZoCWgPQwhstBzoobYEwJSGlFKUaBVLMmgWR0Cm73nZbpu/dX2UKGgGaAloD0MIdH6K48ArFcCUhpRSlGgVSzJoFkdApu8890RvnHV9lChoBmgJaA9DCJ8ih4ibMwnAlIaUUpRoFUsyaBZHQKbu/2aDwph1fZQoaAZoCWgPQwgwnkFD/4QAwJSGlFKUaBVLMmgWR0Cm7sKDkELZdX2UKGgGaAloD0MIb/QxHxCYEsCUhpRSlGgVSzJoFkdApvEOeQMhHXV9lChoBmgJaA9DCBaE8j6Opg3AlIaUUpRoFUsyaBZHQKbw0hK15Sp1fZQoaAZoCWgPQwjtt3aiJNQWwJSGlFKUaBVLMmgWR0Cm8JTtTkyUdX2UKGgGaAloD0MIBTOmYI1DGcCUhpRSlGgVSzJoFkdApvBYIUrTY3V9lChoBmgJaA9DCJoK8Ui8nBPAlIaUUpRoFUsyaBZHQKby52wmmch1fZQoaAZoCWgPQwguILQevowMwJSGlFKUaBVLMmgWR0Cm8qrOZ9eAdX2UKGgGaAloD0MIOQmlL4Rc/r+UhpRSlGgVSzJoFkdApvJt3jdYXHV9lChoBmgJaA9DCCQNbmsL7w7AlIaUUpRoFUsyaBZHQKbyMPOpsGh1fZQoaAZoCWgPQwjVWS2wx3QYwJSGlFKUaBVLMmgWR0Cm9I6URnOCdX2UKGgGaAloD0MIQEzChTwCEcCUhpRSlGgVSzJoFkdApvRRsMy8BnV9lChoBmgJaA9DCC2xMhr5fPq/lIaUUpRoFUsyaBZHQKb0FDLKV6h1fZQoaAZoCWgPQwh4YtaLoawRwJSGlFKUaBVLMmgWR0Cm89c/MW43dX2UKGgGaAloD0MINe7Nb5gIB8CUhpRSlGgVSzJoFkdApvYF1SwW33V9lChoBmgJaA9DCOsfRDLkCBbAlIaUUpRoFUsyaBZHQKb1yOinHed1fZQoaAZoCWgPQwj4UKIlj8cGwJSGlFKUaBVLMmgWR0Cm9YsaCL/CdX2UKGgGaAloD0MI/n4xW7LqCcCUhpRSlGgVSzJoFkdApvVObqhUR3V9lChoBmgJaA9DCHgJTn0gmRLAlIaUUpRoFUsyaBZHQKb3lcJtzjp1fZQoaAZoCWgPQwhGByRh304BwJSGlFKUaBVLMmgWR0Cm91jin5zpdX2UKGgGaAloD0MIkj8YeO6NEsCUhpRSlGgVSzJoFkdApvcbMkhRqHV9lChoBmgJaA9DCOD1mbM+pRDAlIaUUpRoFUsyaBZHQKb23n27FsJ1fZQoaAZoCWgPQwgj2/l+arwVwJSGlFKUaBVLMmgWR0Cm+InxSYPYdX2UKGgGaAloD0MIbToCuFncDsCUhpRSlGgVSzJoFkdApvhMSsbNr3V9lChoBmgJaA9DCFEv+DQnrx3AlIaUUpRoFUsyaBZHQKb4DdfLLZB1fZQoaAZoCWgPQwioqzsW2yQPwJSGlFKUaBVLMmgWR0Cm99BRZU1idX2UKGgGaAloD0MIqpz2lJzzAcCUhpRSlGgVSzJoFkdApvluzlcQiHV9lChoBmgJaA9DCKN06V+SKhXAlIaUUpRoFUsyaBZHQKb5MXZ5AyF1fZQoaAZoCWgPQwj1EfjDzy8YwJSGlFKUaBVLMmgWR0Cm+PMByS3cdX2UKGgGaAloD0MIbmqg+ZzrF8CUhpRSlGgVSzJoFkdApvi1h9b5dnV9lChoBmgJaA9DCEqzeRwGUwjAlIaUUpRoFUsyaBZHQKb6SWCVbA11fZQoaAZoCWgPQwgijnVxGw0KwJSGlFKUaBVLMmgWR0Cm+gu6/ZdwdX2UKGgGaAloD0MIFoVdFD3QBcCUhpRSlGgVSzJoFkdApvnNZid8RnV9lChoBmgJaA9DCDvHgOz1jg/AlIaUUpRoFUsyaBZHQKb5kCqZML51fZQoaAZoCWgPQwhK628JwE8TwJSGlFKUaBVLMmgWR0Cm+y28Zk08dX2UKGgGaAloD0MIoWr0aoCSF8CUhpRSlGgVSzJoFkdApvrwUYbbUXV9lChoBmgJaA9DCP8EFytqMA/AlIaUUpRoFUsyaBZHQKb6sfaHsTp1fZQoaAZoCWgPQwiOrPwyGLMVwJSGlFKUaBVLMmgWR0Cm+nRhc7hfdX2UKGgGaAloD0MI8IXJVMFIDsCUhpRSlGgVSzJoFkdApvwXOnl4knV9lChoBmgJaA9DCE27mGa6VwLAlIaUUpRoFUsyaBZHQKb72Z/CqId1fZQoaAZoCWgPQwjHhJhLqsYTwJSGlFKUaBVLMmgWR0Cm+5s8xKxtdX2UKGgGaAloD0MIB5W4jnHFGcCUhpRSlGgVSzJoFkdApvtdpEhJRXV9lChoBmgJaA9DCMb7cfvlkxXAlIaUUpRoFUsyaBZHQKb8/hFVktp1fZQoaAZoCWgPQwjKG2DmO6gSwJSGlFKUaBVLMmgWR0Cm/MCIUJv6dX2UKGgGaAloD0MIniXICKiQCcCUhpRSlGgVSzJoFkdApvyCGi5/b3V9lChoBmgJaA9DCHuEmiFVlAbAlIaUUpRoFUsyaBZHQKb8ROD8Lrp1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d65ec0b31521c232a8cecc390817c5eae2df37bbe78349bf53d3e48276832cd1
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a0cc0eebd64d5f2b2f3701d68b9a980c9cd4b791354bc7eb16f9a5fe2044bb8
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8d005de040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8d005d5b70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675790214764270329, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/IzgProaWTzboB0//IzgProaWTzboB0//IzgProaWTzboB0//IzgProaWTzboB0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAT4LJv7Unhb8ow9A/srXYP2Xzxj/cwJC+R4ffPgkLDr+m39C/kzdyP6Ngmb8CB94/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD8jOA+uhpZPNugHT/yNDE8pg+WO1rE1rv8jOA+uhpZPNugHT/yNDE8pg+WO1rE1rv8jOA+uhpZPNugHT/yNDE8pg+WO1rE1rv8jOA+uhpZPNugHT/yNDE8pg+WO1rE1ruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43857563 0.013251 0.6157357 ]\n [0.43857563 0.013251 0.6157357 ]\n [0.43857563 0.013251 0.6157357 ]\n [0.43857563 0.013251 0.6157357 ]]", "desired_goal": "[[-1.5742892 -1.0402743 1.6309557 ]\n [ 1.6930449 1.5543028 -0.2827214 ]\n [ 0.43657896 -0.5548559 -1.6318252 ]\n [ 0.9461605 -1.1982616 1.7345889 ]]", "observation": "[[ 0.43857563 0.013251 0.6157357 0.01081585 0.0045795 -0.00655417]\n [ 0.43857563 0.013251 0.6157357 0.01081585 0.0045795 -0.00655417]\n [ 0.43857563 0.013251 0.6157357 0.01081585 0.0045795 -0.00655417]\n [ 0.43857563 0.013251 0.6157357 0.01081585 0.0045795 -0.00655417]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4C2iPUGfsTr28509E6aWPUuK8T1WQcY68M8SvtnHCz5j8lA+9BzBPRtZqTvqXIc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07918906 0.00135515 0.07712547]\n [ 0.07355895 0.11793955 0.00151257]\n [-0.14337134 0.13650455 0.20404963]\n [ 0.0942935 0.00516809 0.26438075]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIICi37XukGMCUhpRSlIwBbJRLMowBdJRHQKbjMoG6f8N1fZQoaAZoCWgPQwiGPIIbKZsFwJSGlFKUaBVLMmgWR0Cm4vTP0I1MdX2UKGgGaAloD0MIYYvdPqscEcCUhpRSlGgVSzJoFkdApuK2cjJMg3V9lChoBmgJaA9DCHYzox8NVxjAlIaUUpRoFUsyaBZHQKbiePn0TUR1fZQoaAZoCWgPQwg5tMh2vl8EwJSGlFKUaBVLMmgWR0Cm5C5D7ZWadX2UKGgGaAloD0MIG0gXm1YaE8CUhpRSlGgVSzJoFkdApuPxDgIhQnV9lChoBmgJaA9DCLyt9Nps7ADAlIaUUpRoFUsyaBZHQKbjspnYg7p1fZQoaAZoCWgPQwha1v1jIdoKwJSGlFKUaBVLMmgWR0Cm43W9DhLodX2UKGgGaAloD0MIhlW8kXmUE8CUhpRSlGgVSzJoFkdApuUIa99MK3V9lChoBmgJaA9DCC0FpP0P0AnAlIaUUpRoFUsyaBZHQKbkyr+YMOR1fZQoaAZoCWgPQwhffNEeL4QAwJSGlFKUaBVLMmgWR0Cm5IxNqQA/dX2UKGgGaAloD0MIIEQy5Nj6B8CUhpRSlGgVSzJoFkdApuRO0LMLW3V9lChoBmgJaA9DCCqsVFBRZRTAlIaUUpRoFUsyaBZHQKbl5ucc2it1fZQoaAZoCWgPQwjFA8qmXPEUwJSGlFKUaBVLMmgWR0Cm5alLnLaFdX2UKGgGaAloD0MIZOYCl8faBMCUhpRSlGgVSzJoFkdApuVqxLTQV3V9lChoBmgJaA9DCC2VtyOctgfAlIaUUpRoFUsyaBZHQKblLTm4iHJ1fZQoaAZoCWgPQwhFL6NYbvkYwJSGlFKUaBVLMmgWR0Cm5t6GgzxgdX2UKGgGaAloD0MITz49tmXgDsCUhpRSlGgVSzJoFkdApuahcophF3V9lChoBmgJaA9DCKCM8WH2shDAlIaUUpRoFUsyaBZHQKbmYydnTRZ1fZQoaAZoCWgPQwgMzXUaaQkJwJSGlFKUaBVLMmgWR0Cm5iXgk1MudX2UKGgGaAloD0MIHm6HhsUIC8CUhpRSlGgVSzJoFkdApufJujynUHV9lChoBmgJaA9DCHmvWpnwSwnAlIaUUpRoFUsyaBZHQKbnjA/s3Q51fZQoaAZoCWgPQwhXsI14slsLwJSGlFKUaBVLMmgWR0Cm504qPOpsdX2UKGgGaAloD0MIfEW3XtOjFcCUhpRSlGgVSzJoFkdApucQ/HHWBnV9lChoBmgJaA9DCF3dsdgm9RHAlIaUUpRoFUsyaBZHQKboqtuk1uR1fZQoaAZoCWgPQwi9w+3QsFgJwJSGlFKUaBVLMmgWR0Cm6G03XI2gdX2UKGgGaAloD0MI8fRKWYYoEMCUhpRSlGgVSzJoFkdApuguuTzNEHV9lChoBmgJaA9DCB3KUBVTiQ7AlIaUUpRoFUsyaBZHQKbn8TEBKcx1fZQoaAZoCWgPQwgBF2TL8hULwJSGlFKUaBVLMmgWR0Cm6Ystbs4UdX2UKGgGaAloD0MI+3lTkQrDDsCUhpRSlGgVSzJoFkdApulNqgyuZHV9lChoBmgJaA9DCBzvjozVJg7AlIaUUpRoFUsyaBZHQKbpD3xnWat1fZQoaAZoCWgPQwjecvVjk1wDwJSGlFKUaBVLMmgWR0Cm6NIb4rSWdX2UKGgGaAloD0MI843onnVNA8CUhpRSlGgVSzJoFkdApupy7PIGQnV9lChoBmgJaA9DCIbLKmwGmALAlIaUUpRoFUsyaBZHQKbqNT3IuGt1fZQoaAZoCWgPQwjniedsAaENwJSGlFKUaBVLMmgWR0Cm6fbXHzYmdX2UKGgGaAloD0MIfuTWpNuCFcCUhpRSlGgVSzJoFkdApum5t+CsfnV9lChoBmgJaA9DCBQ/xty1xA7AlIaUUpRoFUsyaBZHQKbrVK4hEBt1fZQoaAZoCWgPQwi7ufjbnkAWwJSGlFKUaBVLMmgWR0Cm6xcQAdXDdX2UKGgGaAloD0MI+b64VKWNC8CUhpRSlGgVSzJoFkdApurYicG1QnV9lChoBmgJaA9DCIvFbworNQzAlIaUUpRoFUsyaBZHQKbqmuoxYaJ1fZQoaAZoCWgPQwht4uR+h6INwJSGlFKUaBVLMmgWR0Cm7C8o6S1WdX2UKGgGaAloD0MIPWU1XU+0DMCUhpRSlGgVSzJoFkdApuvxk7Omi3V9lChoBmgJaA9DCN1dZ0P++QTAlIaUUpRoFUsyaBZHQKbrszyjHn51fZQoaAZoCWgPQwjFVtC0xEoNwJSGlFKUaBVLMmgWR0Cm63W6kIomdX2UKGgGaAloD0MI34rEBDXcB8CUhpRSlGgVSzJoFkdApu0ZBu4wy3V9lChoBmgJaA9DCDrKwWwCrAvAlIaUUpRoFUsyaBZHQKbs24sEq2B1fZQoaAZoCWgPQwgYBcHj21sSwJSGlFKUaBVLMmgWR0Cm7J150KZ2dX2UKGgGaAloD0MIQIaOHVSyE8CUhpRSlGgVSzJoFkdApuxgIt16mnV9lChoBmgJaA9DCDPeVnptVgLAlIaUUpRoFUsyaBZHQKbt/BrN4aB1fZQoaAZoCWgPQwiQhegQOPIWwJSGlFKUaBVLMmgWR0Cm7b5pJwsHdX2UKGgGaAloD0MI51Wd1QLbEMCUhpRSlGgVSzJoFkdApu1/6KtPpXV9lChoBmgJaA9DCLzrbMg/sw3AlIaUUpRoFUsyaBZHQKbtQmMOwxF1fZQoaAZoCWgPQwhstBzoobYEwJSGlFKUaBVLMmgWR0Cm73nZbpu/dX2UKGgGaAloD0MIdH6K48ArFcCUhpRSlGgVSzJoFkdApu8890RvnHV9lChoBmgJaA9DCJ8ih4ibMwnAlIaUUpRoFUsyaBZHQKbu/2aDwph1fZQoaAZoCWgPQwgwnkFD/4QAwJSGlFKUaBVLMmgWR0Cm7sKDkELZdX2UKGgGaAloD0MIb/QxHxCYEsCUhpRSlGgVSzJoFkdApvEOeQMhHXV9lChoBmgJaA9DCBaE8j6Opg3AlIaUUpRoFUsyaBZHQKbw0hK15Sp1fZQoaAZoCWgPQwjtt3aiJNQWwJSGlFKUaBVLMmgWR0Cm8JTtTkyUdX2UKGgGaAloD0MIBTOmYI1DGcCUhpRSlGgVSzJoFkdApvBYIUrTY3V9lChoBmgJaA9DCJoK8Ui8nBPAlIaUUpRoFUsyaBZHQKby52wmmch1fZQoaAZoCWgPQwguILQevowMwJSGlFKUaBVLMmgWR0Cm8qrOZ9eAdX2UKGgGaAloD0MIOQmlL4Rc/r+UhpRSlGgVSzJoFkdApvJt3jdYXHV9lChoBmgJaA9DCCQNbmsL7w7AlIaUUpRoFUsyaBZHQKbyMPOpsGh1fZQoaAZoCWgPQwjVWS2wx3QYwJSGlFKUaBVLMmgWR0Cm9I6URnOCdX2UKGgGaAloD0MIQEzChTwCEcCUhpRSlGgVSzJoFkdApvRRsMy8BnV9lChoBmgJaA9DCC2xMhr5fPq/lIaUUpRoFUsyaBZHQKb0FDLKV6h1fZQoaAZoCWgPQwh4YtaLoawRwJSGlFKUaBVLMmgWR0Cm89c/MW43dX2UKGgGaAloD0MINe7Nb5gIB8CUhpRSlGgVSzJoFkdApvYF1SwW33V9lChoBmgJaA9DCOsfRDLkCBbAlIaUUpRoFUsyaBZHQKb1yOinHed1fZQoaAZoCWgPQwj4UKIlj8cGwJSGlFKUaBVLMmgWR0Cm9YsaCL/CdX2UKGgGaAloD0MI/n4xW7LqCcCUhpRSlGgVSzJoFkdApvVObqhUR3V9lChoBmgJaA9DCHgJTn0gmRLAlIaUUpRoFUsyaBZHQKb3lcJtzjp1fZQoaAZoCWgPQwhGByRh304BwJSGlFKUaBVLMmgWR0Cm91jin5zpdX2UKGgGaAloD0MIkj8YeO6NEsCUhpRSlGgVSzJoFkdApvcbMkhRqHV9lChoBmgJaA9DCOD1mbM+pRDAlIaUUpRoFUsyaBZHQKb23n27FsJ1fZQoaAZoCWgPQwgj2/l+arwVwJSGlFKUaBVLMmgWR0Cm+InxSYPYdX2UKGgGaAloD0MIbToCuFncDsCUhpRSlGgVSzJoFkdApvhMSsbNr3V9lChoBmgJaA9DCFEv+DQnrx3AlIaUUpRoFUsyaBZHQKb4DdfLLZB1fZQoaAZoCWgPQwioqzsW2yQPwJSGlFKUaBVLMmgWR0Cm99BRZU1idX2UKGgGaAloD0MIqpz2lJzzAcCUhpRSlGgVSzJoFkdApvluzlcQiHV9lChoBmgJaA9DCKN06V+SKhXAlIaUUpRoFUsyaBZHQKb5MXZ5AyF1fZQoaAZoCWgPQwj1EfjDzy8YwJSGlFKUaBVLMmgWR0Cm+PMByS3cdX2UKGgGaAloD0MIbmqg+ZzrF8CUhpRSlGgVSzJoFkdApvi1h9b5dnV9lChoBmgJaA9DCEqzeRwGUwjAlIaUUpRoFUsyaBZHQKb6SWCVbA11fZQoaAZoCWgPQwgijnVxGw0KwJSGlFKUaBVLMmgWR0Cm+gu6/ZdwdX2UKGgGaAloD0MIFoVdFD3QBcCUhpRSlGgVSzJoFkdApvnNZid8RnV9lChoBmgJaA9DCDvHgOz1jg/AlIaUUpRoFUsyaBZHQKb5kCqZML51fZQoaAZoCWgPQwhK628JwE8TwJSGlFKUaBVLMmgWR0Cm+y28Zk08dX2UKGgGaAloD0MIoWr0aoCSF8CUhpRSlGgVSzJoFkdApvrwUYbbUXV9lChoBmgJaA9DCP8EFytqMA/AlIaUUpRoFUsyaBZHQKb6sfaHsTp1fZQoaAZoCWgPQwiOrPwyGLMVwJSGlFKUaBVLMmgWR0Cm+nRhc7hfdX2UKGgGaAloD0MI8IXJVMFIDsCUhpRSlGgVSzJoFkdApvwXOnl4knV9lChoBmgJaA9DCE27mGa6VwLAlIaUUpRoFUsyaBZHQKb72Z/CqId1fZQoaAZoCWgPQwjHhJhLqsYTwJSGlFKUaBVLMmgWR0Cm+5s8xKxtdX2UKGgGaAloD0MIB5W4jnHFGcCUhpRSlGgVSzJoFkdApvtdpEhJRXV9lChoBmgJaA9DCMb7cfvlkxXAlIaUUpRoFUsyaBZHQKb8/hFVktp1fZQoaAZoCWgPQwjKG2DmO6gSwJSGlFKUaBVLMmgWR0Cm/MCIUJv6dX2UKGgGaAloD0MIniXICKiQCcCUhpRSlGgVSzJoFkdApvyCGi5/b3V9lChoBmgJaA9DCHuEmiFVlAbAlIaUUpRoFUsyaBZHQKb8ROD8Lrp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (822 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.955824660882354, "std_reward": 1.6625996175560267, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-07T18:07:09.372181"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b2cf54a6b5dd4fa7d44b0cce5e4f252fbf207283db0767d92e4a6254f30ba86
3
+ size 3056