# You Only Sample Once (YOSO) ## Usage ### 1-step inference 1-step inference is only allowed based on SD v1.5 for now. And you should prepare the informative initialization according to the paper for better results. ```python pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype = torch.float16) pipeline = pipeline.to('cuda') pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config) generator = torch.manual_seed(318) steps = 1 bs = 1 latents = ... # maybe some latent codes of real images or SD generation latent_mean = latent.mean(dim=0) noise = torch.randn([1,bs,64,64]) input_latent = pipeline.scheduler.add_noise(latent_mean.repeat(bs,1,1,1),noise,T) imgs= pipeline(prompt="A photo of a dog", num_inference_steps=steps, num_images_per_prompt = 1, generator = generator, guidance_scale=1.5, latents = input_latent, )[0] imgs ``` ### 2-step inference We note that a small CFG can be used to enhance the image quality. ```python pipeline = DiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51", torch_dtype = torch.float16) pipeline = pipeline.to('cuda') pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config) generator = torch.manual_seed(318) steps = 2 imgs= pipeline(prompt="A photo of a man, XT3", num_inference_steps=steps, num_images_per_prompt = 1, generator = generator, guidance_scale=1.5, )[0] imgs ```