File size: 4,254 Bytes
1e820d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import whisper
from torch import nn
from torch import Tensor


class PyAI:
    def __init__(self, useGPU: bool):
        self.GPU = useGPU
    
    class Algorithms:
        def KNN(x, y, returnValues = 0):
            distances = []
            for axisX, axisY in zip(x, y):
                distance = axisX - axisY
                absDistance = np.absolute(distance)
                distances.append(absDistance)
                
            sortedDistances = []
            checkDistance = min(distances, key = lambda x:np.absolute(x-i)) 
            sortedDistances.append(checkDistance)
            distances.remove(checkDistance)
                
            if returnValues == 0:
                return sortedDistances[0]
            else:
                return sortedDistances[0:returnValues-1]
            
        def RNN(w, u, b, x):
            yt = 0
            ht = 1 / 1 (w * x + u * yt ** -1 + b) ** -1
            yt = 1 / 1 (w * ht + b) ** -1

            return yt

        def ReLU(self, x: list, *y: list, **u: list):
            X, Y, U = [Tensor(x2) for x2 in x], [Tensor(y2) for y2 in y], [Tensor(u2) for u2 in u]
            
            if self.GPU:
                relu = nn.ReLU().to("cuda")
            else:
                relu = nn.ReLU().to("cpu")
                
            newX, newY, newU = [relu(x) for x in X], [relu(y) for y in Y], [relu(u) for u in U]
            
            if newU is not None:
                return newX, newY, newU
            elif newY is not None:
                return newX, newY
            else:
                return newX
            
    class Audio:
        def __init__(self, audio: str):
            self.model = whisper.load_model("base")
            self.audio = audio
            
        def generateTextFromAudio(self) -> str:
            aud = whisper.load_audio(self.audio)
            aud = whisper.pad_or_trim(aud)

            self.mel = whisper.log_mel_spectrogram(aud).to(self.model.device)

            self.model.detect_language(self.mel)

            options = whisper.DecodingOptions()
            result = whisper.decode(self.model, self.mel, options)

            return result.text
        
        def translateText(self, text: str, dataSet: str) -> str:
            with open(dataSet, "r") as d:
                data = d.read()
                
            translation = text.translate(data)
            
            return translation
        
        def getLang(self):
            i, lang = self.model.detect_language(self.mel)
            return max(lang, key=lang.get)

    class NLP:
        def __init__(self, text: str):
            self.text = text
            self.sentences = text.split(".")
            self.words = text.split(" ")
            self._past = ["was", "had", "did"]
            self._present = ["is", "has"]
            self._future = ["will", "shall"]

        def setTokensTo(self, letters: bool, *words: bool, **sentences: bool):
            self.tokens = []

            if letters:
                tokens = iter(self.text)
                for t in tokens:
                    self.tokens.append(t)
            elif words:
                for t in self.words:
                    self.tokens.append(t)
            elif sentences:
                for t in self.sentences:
                    self.tokens.append(t)
            else:
                self.tokens.append("ERROR")

        def getTense(self):
            self.past = False
            self.present = False
            self.future = False

            if self.sentences in self._past:
                self.past = True
            elif self.sentences in self._present:
                self.present = True
            elif self.sentences in self._future:
                self.future = True
            else:
                return "ERROR - Tense :: Not Enough Data"

            return self.past, self.present, self.future

        def getWords(self):
            return self.words

        def getSentences(self):
            return self.sentences
        
        def getTokens(self):
            return self.tokens