--- language: - pt license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - M2LabOrg/jwlang metrics: - wer model-index: - name: Whisper medium pt jwlang - Michel Mesquita results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: jwlang 1.0 type: M2LabOrg/jwlang args: 'config: pt, split: test' metrics: - name: Wer type: wer value: 18.727050183598532 --- # Whisper medium pt jwlang - Michel Mesquita This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the jwlang 1.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6361 - Wer: 18.7271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0038 | 14.0845 | 1000 | 0.5291 | 20.3182 | | 0.0001 | 28.1690 | 2000 | 0.6034 | 18.9718 | | 0.0 | 42.2535 | 3000 | 0.6277 | 19.0942 | | 0.0 | 56.3380 | 4000 | 0.6361 | 18.7271 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1